Skip to main content
Erschienen in: Cognitive Neurodynamics 3/2016

01.06.2016 | Research Article

Functional connectivity between prefrontal cortex and striatum estimated by phase locking value

verfasst von: Yan Zhang, Xiaochuan Pan, Rubin Wang, Masamichi Sakagami

Erschienen in: Cognitive Neurodynamics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The interplay between the prefrontal cortex (PFC) and striatum has an important role in cognitive processes. To investigate interactive functions between the two areas in reward processing, we recorded local field potentials (LFPs) simultaneously from the two areas of two monkeys performing a reward prediction task (large reward vs small reward). The power of the LFPs was calculated in three frequency bands: the beta band (15–29 Hz), the low gamma band (30–49 Hz), and the high gamma band (50–100 Hz). We found that both the PFC and striatum encoded the reward information in the beta band. The reward information was also found in the high gamma band in the PFC, not in the striatum. We further calculated the phase-locking value (PLV) between two LFP signals to measure the phase synchrony between the PFC and striatum. It was found that significant differences occurred between PLVs in different task periods and in different frequency bands. The PLVs in small reward condition were significant higher than that in large reward condition in the beta band. In contrast, the PLVs in the high gamma band were stronger in large reward trials than in small trials. These results suggested that the functional connectivity between the PFC and striatum depended on the task periods and reward conditions. The beta synchrony between the PFC and striatum may regulate behavioral outputs of the monkeys in the small reward condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381CrossRefPubMed Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381CrossRefPubMed
Zurück zum Zitat Antzoulatos EG, Miller EK (2011) Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron 71(2):243–249CrossRefPubMedPubMedCentral Antzoulatos EG, Miller EK (2011) Differences between neural activity in prefrontal cortex and striatum during learning of novel abstract categories. Neuron 71(2):243–249CrossRefPubMedPubMedCentral
Zurück zum Zitat Antzoulatos EG, Miller EK (2014) Increases in functional connectivity between prefrontal cortex and striatum during category learning. Neuron 83(1):216–225CrossRefPubMedPubMedCentral Antzoulatos EG, Miller EK (2014) Increases in functional connectivity between prefrontal cortex and striatum during category learning. Neuron 83(1):216–225CrossRefPubMedPubMedCentral
Zurück zum Zitat Asaad WF, Eskandard EN (2011) Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci 31(49):17772–17787CrossRefPubMedPubMedCentral Asaad WF, Eskandard EN (2011) Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci 31(49):17772–17787CrossRefPubMedPubMedCentral
Zurück zum Zitat Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci 7:404–410CrossRefPubMed Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci 7:404–410CrossRefPubMed
Zurück zum Zitat Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501CrossRefPubMed Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 26:490–501CrossRefPubMed
Zurück zum Zitat Berke JD (2009) Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. J Neurosci 30:848–859 Berke JD (2009) Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. J Neurosci 30:848–859
Zurück zum Zitat Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862CrossRefPubMed
Zurück zum Zitat Cohen MX (2014) Analyzing neural time series data theory and practices. MIT Press, Combridge Cohen MX (2014) Analyzing neural time series data theory and practices. MIT Press, Combridge
Zurück zum Zitat Courtemanche R, Fujii N, Graybiel AM (2003) Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 23(37):11741–11752PubMed Courtemanche R, Fujii N, Graybiel AM (2003) Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 23(37):11741–11752PubMed
Zurück zum Zitat Courtney KE, Ghahremani DG, Ray LA (2013) Fronto-striatal functional connectivity during response inhibition in alcohol dependence. Addict Biol 18(3):593–604CrossRefPubMedPubMedCentral Courtney KE, Ghahremani DG, Ray LA (2013) Fronto-striatal functional connectivity during response inhibition in alcohol dependence. Addict Biol 18(3):593–604CrossRefPubMedPubMedCentral
Zurück zum Zitat Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711CrossRefPubMed Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711CrossRefPubMed
Zurück zum Zitat Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F (2015) Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA 112(5):1595–1600CrossRefPubMedPubMedCentral Deserno L, Huys QJ, Boehme R, Buchert R, Heinze HJ, Grace AA, Dolan RJ, Heinz A, Schlagenhauf F (2015) Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proc Natl Acad Sci USA 112(5):1595–1600CrossRefPubMedPubMedCentral
Zurück zum Zitat Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20:156–165CrossRefPubMed Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20:156–165CrossRefPubMed
Zurück zum Zitat Engel AK, Fries P, Singer W (2001) Dynamic predictions, oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed Engel AK, Fries P, Singer W (2001) Dynamic predictions, oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716CrossRefPubMed
Zurück zum Zitat Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480CrossRefPubMed Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480CrossRefPubMed
Zurück zum Zitat Garrison J, Erdeniz B, Done J (2013) Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 37(7):1297–1310CrossRefPubMed Garrison J, Erdeniz B, Done J (2013) Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 37(7):1297–1310CrossRefPubMed
Zurück zum Zitat Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66(4):585–595CrossRefPubMedPubMedCentral Glascher J, Daw N, Dayan P, O’Doherty JP (2010) States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron 66(4):585–595CrossRefPubMedPubMedCentral
Zurück zum Zitat Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High frequency long range coupling between prefrontal cortex and visual cortex during attention. Science 324:1207–1210CrossRefPubMedPubMedCentral Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High frequency long range coupling between prefrontal cortex and visual cortex during attention. Science 324:1207–1210CrossRefPubMedPubMedCentral
Zurück zum Zitat Gregoriou GG, Paneri S, Sapountzis P (2015) Oscillatory synchrony as a mechanism of attentional processing. Brain Res 1626:165–182CrossRefPubMed Gregoriou GG, Paneri S, Sapountzis P (2015) Oscillatory synchrony as a mechanism of attentional processing. Brain Res 1626:165–182CrossRefPubMed
Zurück zum Zitat Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376CrossRefPubMed Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376CrossRefPubMed
Zurück zum Zitat Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ (2009) Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci USA 106(52):22445–22450CrossRefPubMedPubMedCentral Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ (2009) Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci USA 106(52):22445–22450CrossRefPubMedPubMedCentral
Zurück zum Zitat Hikosaka O, Bromberg-Martin E, Hong S, Matsumoto M (2008) New insights on the subcortical representation of reward. Curr Opin Neurobiol 18(2):203–208CrossRefPubMedPubMedCentral Hikosaka O, Bromberg-Martin E, Hong S, Matsumoto M (2008) New insights on the subcortical representation of reward. Curr Opin Neurobiol 18(2):203–208CrossRefPubMedPubMedCentral
Zurück zum Zitat Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80(2):947–963PubMed Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80(2):947–963PubMed
Zurück zum Zitat Juergen F, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118CrossRef Juergen F, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118CrossRef
Zurück zum Zitat Kalenscher T, Lansink CS, Lankelma JV, Pennartz CMA (2010) Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. J Neurophysiol 103:1658–1672CrossRefPubMed Kalenscher T, Lansink CS, Lankelma JV, Pennartz CMA (2010) Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. J Neurophysiol 103:1658–1672CrossRefPubMed
Zurück zum Zitat Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1:411–416CrossRefPubMed Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1:411–416CrossRefPubMed
Zurück zum Zitat Kobayashi S, Nomoto K, Watanabe M, Hikosaka O, Schultz W, Sakagami M (2006) Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 5:861–870CrossRef Kobayashi S, Nomoto K, Watanabe M, Hikosaka O, Schultz W, Sakagami M (2006) Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 5:861–870CrossRef
Zurück zum Zitat Lee SW, Shimojo S, O’Doherty JP (2014) Neural computations underlying arbitration between model-based and model-free learning. Neuron 81(3):687–699CrossRefPubMedPubMedCentral Lee SW, Shimojo S, O’Doherty JP (2014) Neural computations underlying arbitration between model-based and model-free learning. Neuron 81(3):687–699CrossRefPubMedPubMedCentral
Zurück zum Zitat Lega BC, Kahana M, Jaggi J, Baltuch GH, Zaghloul K (2011) Neuronal and oscillatory activity during reward processing in the human ventral striatum. NeuroReport 22(16):795–800PubMedPubMedCentral Lega BC, Kahana M, Jaggi J, Baltuch GH, Zaghloul K (2011) Neuronal and oscillatory activity during reward processing in the human ventral striatum. NeuroReport 22(16):795–800PubMedPubMedCentral
Zurück zum Zitat O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337CrossRefPubMed O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337CrossRefPubMed
Zurück zum Zitat Pan XC, Sawa K, Tsuda I, Tsukada M, Sakagami M (2008) Reward prediction based on stimulus categorization in primate lateral prefrontal cortex. Nat Neurosci 11:703–712CrossRefPubMed Pan XC, Sawa K, Tsuda I, Tsukada M, Sakagami M (2008) Reward prediction based on stimulus categorization in primate lateral prefrontal cortex. Nat Neurosci 11:703–712CrossRefPubMed
Zurück zum Zitat Pan XC, Fan HW, Sawa K, Tsuda I, Tsukada M, Sakagami M (2014) Reward inference by primate prefrontal and striatal neurons. J Neurosci 34(4):1380–1396CrossRefPubMedPubMedCentral Pan XC, Fan HW, Sawa K, Tsuda I, Tsukada M, Sakagami M (2014) Reward inference by primate prefrontal and striatal neurons. J Neurosci 34(4):1380–1396CrossRefPubMedPubMedCentral
Zurück zum Zitat Pascal F (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224CrossRef Pascal F (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224CrossRef
Zurück zum Zitat Pavlidou A, Schnitzler A, Lange J (2014) Beta oscillations and their functional role in movement perception. Transl Neurosci 5(4):286–292CrossRef Pavlidou A, Schnitzler A, Lange J (2014) Beta oscillations and their functional role in movement perception. Transl Neurosci 5(4):286–292CrossRef
Zurück zum Zitat Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nat 453:406–409CrossRef Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between frontal and parietal cortex. Nat 453:406–409CrossRef
Zurück zum Zitat Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS (2008) Neural correlates of high-gamma oscillations (60–200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28(45):11526–11536CrossRefPubMedPubMedCentral Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS (2008) Neural correlates of high-gamma oscillations (60–200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28(45):11526–11536CrossRefPubMedPubMedCentral
Zurück zum Zitat Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11:389–397CrossRefPubMed Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11:389–397CrossRefPubMed
Zurück zum Zitat Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615CrossRefPubMed Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–1615CrossRefPubMed
Zurück zum Zitat Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310:1337–1340CrossRefPubMed Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310:1337–1340CrossRefPubMed
Zurück zum Zitat Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719CrossRefPubMed Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719CrossRefPubMed
Zurück zum Zitat Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR (2009) Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J Neurosci 29:12675–12685CrossRefPubMedPubMedCentral Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR (2009) Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J Neurosci 29:12675–12685CrossRefPubMedPubMedCentral
Zurück zum Zitat Tadayonnejad R, Yang S, Kumar A, Ajilore O (2015) Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. J Affect Disord 172:241–250CrossRefPubMedPubMedCentral Tadayonnejad R, Yang S, Kumar A, Ajilore O (2015) Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. J Affect Disord 172:241–250CrossRefPubMedPubMedCentral
Zurück zum Zitat Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382(6592):629–632CrossRefPubMed Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382(6592):629–632CrossRefPubMed
Zurück zum Zitat Xu XX, Zheng CG, Zhang T (2013) Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. Front Comput Neurosci 7:1–8CrossRef Xu XX, Zheng CG, Zhang T (2013) Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. Front Comput Neurosci 7:1–8CrossRef
Zurück zum Zitat Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476CrossRefPubMed Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476CrossRefPubMed
Zurück zum Zitat Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS (2013) Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 74:122–129CrossRefPubMedPubMedCentral Yoon JH, Minzenberg MJ, Raouf S, D’Esposito M, Carter CS (2013) Impaired prefrontal-basal ganglia functional connectivity and substantia nigra hyperactivity in schizophrenia. Biol Psychiatry 74:122–129CrossRefPubMedPubMedCentral
Metadaten
Titel
Functional connectivity between prefrontal cortex and striatum estimated by phase locking value
verfasst von
Yan Zhang
Xiaochuan Pan
Rubin Wang
Masamichi Sakagami
Publikationsdatum
01.06.2016
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 3/2016
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-016-9376-2

Weitere Artikel der Ausgabe 3/2016

Cognitive Neurodynamics 3/2016 Zur Ausgabe

Neuer Inhalt