Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2014

01.08.2014

Strengthening Micromechanisms in Cold-Chamber High-Pressure Die-Cast Mg-Al Alloys

verfasst von: Kun V. Yang, Carlos H. Cáceres, Mark A. Easton

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The contributions from grain boundary, solid solution, and dispersion strengthening to the yield strength of cast-to-shape specimens were calculated for seven binary alloys with compositions ranging from very dilute (0.5 mass pct Al) to concentrated (12 mass pct Al). Experimentally and theoretically determined parameters were used to explicitly account for the different microstructures at the skin and core regions of specimens’ cross sections. Microhardness maps were used to identify the specimens’ skin. The specimens’ strength was calculated as the weighted addition of the respective strengths of skin and core. The calculated strengths reproduced well the experimental values for the dilute alloys but underestimated the strength of the most concentrated alloys by as much as ~35 MPa. It is argued that the presence of the percolating network of Mg17Al12 eutectic intermetallic, particularly in the skin region, in conjunction with highly efficient dispersion hardening due to the convoluted shape of the intermetallics, accounts for the shortfall in the calculated strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The data of Figure 1 are given without error bars as they were collected on one set of grains, on a single specimen of each alloy. The accuracy of the data was reassured by the qualitative match with the micrographs of Figures 3 and 4, and the close quantitative agreement of the calculated values for the dilute alloys, whose strengths are largely determined by the grain size (Figure 9).
 
2
The specimens were slightly etched to increase the contrast, but with care not to etch out the Mg17Al12 (the bright phase). The volume fractions measured by image analysis (Table II; Figure 2(b)) on these images matched the values obtained by other techniques, providing confidence that the etching did not affect the integrity of the intermetallic.
 
3
The fraction of the cross section that remained elastic (thus defining the skin) at the point of the stress–strain curve where the core became fully plastic was determined analytically by comparing the strain hardening rate of the different alloys at yielding with that of the most dilute alloy, which does not exhibit a differentiated skin region.[22]
 
4
The Al dissolved in the eutectic α-Mg was included in the calculation of c .
 
5
Both the c ss- and the c E-values are immediate from the phase diagram, unlike the c , which depends on the volume fraction of ESGs, or, in geometrical terms, on the area fraction covered by the core.
 
6
Any departure from the predicted solute profiles of Figure 2 implies a stronger solid solution hardening effect, hence the reference to this calculations as “lower bounds.”
 
7
The strength of the solid solution calculated using the grain’s average solute concentration (c values in Table II) is nearly identical to the solid solution strength averaged over the grain’s diameter.
 
8
Hansen showed that whether the reinforcing particles are located along the grain boundaries or uniformly dispersed inside the grains make little difference to the total strengthening.[49]
 
9
Hansen and Ralph[52] also found a better agreement with the experimental data in dispersion-hardened Cu alloys using a linear addition law.
 
10
The use of a linear addition of the strengths of skin and core is consistent with Kurzydlowski and Bucki’s analysis[53] of the strength of polycrystals made of subpolycrystals of different grain sizes.
 
11
The stiffness of a bending dominated cellular structure scales with the square of the relative volume fraction of solid material.[35,57] From Table 2, the intermetallic at the skin increases from 11 pct for the 8.77 Al alloy to about 17 pct for the 11.6 Al alloy, increasing the local 3D network’s contribution to (7*(17/11)2) ~ 16.7 MPa.
 
Literatur
1.
Zurück zum Zitat S. Kleiner, E. Ogris, O. Beffort, P.J. Uggowitzer, Adv. Eng. Mater., 5 (2003) 653-58.CrossRef S. Kleiner, E. Ogris, O. Beffort, P.J. Uggowitzer, Adv. Eng. Mater., 5 (2003) 653-58.CrossRef
2.
Zurück zum Zitat M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, G.L. Dunlop, Mater. Trans. (JIM), 47 (2006) 977-82.CrossRef M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, G.L. Dunlop, Mater. Trans. (JIM), 47 (2006) 977-82.CrossRef
3.
Zurück zum Zitat A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met., 1 (2001) 61-72.CrossRef A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met., 1 (2001) 61-72.CrossRef
4.
Zurück zum Zitat E. Aghion, N. Moscovitch, A. Arnon, Mater. Sci. Eng. A, 447 (2007) 341-46.CrossRef E. Aghion, N. Moscovitch, A. Arnon, Mater. Sci. Eng. A, 447 (2007) 341-46.CrossRef
5.
Zurück zum Zitat C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 258-68.CrossRef C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 258-68.CrossRef
6.
Zurück zum Zitat C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 269-77.CrossRef C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 269-77.CrossRef
7.
Zurück zum Zitat W.P. Sequeira, G.L. Dunlop, and M.T. Murray: in 3rd International Magnesium Conference, G.W. Lorimer, ed., The Institute of Metals, London, Manchester, 1997, pp. 63–73. W.P. Sequeira, G.L. Dunlop, and M.T. Murray: in 3rd International Magnesium Conference, G.W. Lorimer, ed., The Institute of Metals, London, Manchester, 1997, pp. 63–73.
8.
Zurück zum Zitat W.P. Sequeira, M.T. Murray, G.L. Dunlop, and D.H. StJohn: TMS Symposium on Automotive Alloys, The Minerals Metals and Materials Society (TMS) Warrendale, PA, 1997, pp. 169–83. W.P. Sequeira, M.T. Murray, G.L. Dunlop, and D.H. StJohn: TMS Symposium on Automotive Alloys, The Minerals Metals and Materials Society (TMS) Warrendale, PA, 1997, pp. 169–83.
9.
Zurück zum Zitat J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, and G. Wang: in Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, eds., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2005, pp. 191–96. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, and G. Wang: in Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, eds., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2005, pp. 191–96.
10.
Zurück zum Zitat J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, Mater. Sci. Eng. A, 419 (2006) 297-305.CrossRef J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, Mater. Sci. Eng. A, 419 (2006) 297-305.CrossRef
11.
12.
13.
Zurück zum Zitat S. Sannes, H. Gjestland, H. Westengen, H.I. Laukli, and O. Lohne: in 6th International Conference on Magnesium Alloys and Their Applications, K.U. Kainer, ed., DGM, Willey-VCH, Wolfsburg, 2003, pp. 725–31. S. Sannes, H. Gjestland, H. Westengen, H.I. Laukli, and O. Lohne: in 6th International Conference on Magnesium Alloys and Their Applications, K.U. Kainer, ed., DGM, Willey-VCH, Wolfsburg, 2003, pp. 725–31.
17.
Zurück zum Zitat A.L. Bowles, J.R. Griffiths, and C.J. Davidson: in Magnesium Technology 2001, J. Hryn, ed., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2001, pp. 161–68. A.L. Bowles, J.R. Griffiths, and C.J. Davidson: in Magnesium Technology 2001, J. Hryn, ed., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2001, pp. 161–68.
18.
19.
Zurück zum Zitat H.I. Laukli, O. Lohne, S. Sannes, H. Gjestland, L. Arnberg, Int. J. Cast Met. Res., 16 (2003) 515-21. H.I. Laukli, O. Lohne, S. Sannes, H. Gjestland, L. Arnberg, Int. J. Cast Met. Res., 16 (2003) 515-21.
20.
Zurück zum Zitat H.I. Laukli, C.M. Gourlay, A.K. Dahle, Metall. Mater. Trans. A, 36A (2005) 805-18.CrossRef H.I. Laukli, C.M. Gourlay, A.K. Dahle, Metall. Mater. Trans. A, 36A (2005) 805-18.CrossRef
23.
Zurück zum Zitat D.J. Sakkinen: “Physical Metallurgy of Magnesium Die Casting Alloys”, SAE Technical Paper 940779, SAE, Warrendale, PA, 1994, pp. 558–69. D.J. Sakkinen: “Physical Metallurgy of Magnesium Die Casting Alloys”, SAE Technical Paper 940779, SAE, Warrendale, PA, 1994, pp. 558–69.
24.
Zurück zum Zitat M.A. Easton, H. Kaufmann, W. Fragner, Mater. Sci. Eng. A, 420 (2006) 135-43.CrossRef M.A. Easton, H. Kaufmann, W. Fragner, Mater. Sci. Eng. A, 420 (2006) 135-43.CrossRef
25.
Zurück zum Zitat E. Aghion and B. Bronfin: in Third Int. Magnesium Conf., G.W. Lorimer, ed., The Institute of Materials, Manchester, 1996, pp. 313–25. E. Aghion and B. Bronfin: in Third Int. Magnesium Conf., G.W. Lorimer, ed., The Institute of Materials, Manchester, 1996, pp. 313–25.
26.
Zurück zum Zitat T. Aune, H. Westengen, and T. Ruden: “Mechanical Properties of Energy Absorbing Magnesium Alloys”, SAE Technical Paper 930418, SAE, Warrendale, PA, 1993, pp. 51–57. T. Aune, H. Westengen, and T. Ruden: “Mechanical Properties of Energy Absorbing Magnesium Alloys”, SAE Technical Paper 930418, SAE, Warrendale, PA, 1993, pp. 51–57.
30.
Zurück zum Zitat C.H. Cáceres, J.R. Griffiths, C.J. Davidson, C.L. Newton, Mater. Sci. Eng. A, 325 (2002) 344-55.CrossRef C.H. Cáceres, J.R. Griffiths, C.J. Davidson, C.L. Newton, Mater. Sci. Eng. A, 325 (2002) 344-55.CrossRef
31.
Zurück zum Zitat J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, J. Mater Sci., 40 (2005) 5999-6005.CrossRef J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, J. Mater Sci., 40 (2005) 5999-6005.CrossRef
34.
Zurück zum Zitat Y.-H. Wei, L.-F. Hou, L.-J. Yang, B.-S. Xu, M. Kozuka, H. Ichinose, J. Mater. Process. Technol., 209 (2009) 3278-84.CrossRef Y.-H. Wei, L.-F. Hou, L.-J. Yang, B.-S. Xu, M. Kozuka, H. Ichinose, J. Mater. Process. Technol., 209 (2009) 3278-84.CrossRef
36.
Zurück zum Zitat D. Amberger, P. Eisenlohr, M. Göken, Acta Mater., 60 (2012) 2277-89.CrossRef D. Amberger, P. Eisenlohr, M. Göken, Acta Mater., 60 (2012) 2277-89.CrossRef
37.
39.
Zurück zum Zitat A.V. Nagasekhar, C.H. Caceres, and M.A. Easton: in Magnesium Technology 2008, M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, and E.A. Nyberg, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2008, pp. 343–46. A.V. Nagasekhar, C.H. Caceres, and M.A. Easton: in Magnesium Technology 2008, M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, and E.A. Nyberg, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2008, pp. 343–46.
40.
Zurück zum Zitat W. Kurz, D. Fisher, Fundamentals of Solidification, 4th ed., Trans. Tech. Publications, Switzerland, 1998. W. Kurz, D. Fisher, Fundamentals of Solidification, 4th ed., Trans. Tech. Publications, Switzerland, 1998.
41.
42.
Zurück zum Zitat D. Mirković, R. Schmid-Fetzer, Metall. Mater. Trans. A, 40A (2009) 974-81.CrossRef D. Mirković, R. Schmid-Fetzer, Metall. Mater. Trans. A, 40A (2009) 974-81.CrossRef
43.
Zurück zum Zitat T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics, 17 (2009) 481-90.CrossRef T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics, 17 (2009) 481-90.CrossRef
44.
Zurück zum Zitat M.S. Dargusch, M.A. Easton, S.M. Zhu, G. Wang, Mater. Sci. Eng. A, 523 (2009) 282-88.CrossRef M.S. Dargusch, M.A. Easton, S.M. Zhu, G. Wang, Mater. Sci. Eng. A, 523 (2009) 282-88.CrossRef
45.
Zurück zum Zitat M. Zhou, A. Yu, N.Y. Li, H. Hu, and R. Bowers: in Magnesium Technology 2009, A.A. Luo, N.R. Neelameggham, R. S. Beals, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2006, pp. 121–27. M. Zhou, A. Yu, N.Y. Li, H. Hu, and R. Bowers: in Magnesium Technology 2009, A.A. Luo, N.R. Neelameggham, R. S. Beals, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2006, pp. 121–27.
46.
Zurück zum Zitat A. Stich and H.G. Haldenwanger: in Magnesium 2000 (2nd Israeli Intl. Conf. on Magnesium Science and Technology), E. Aghion and D. Eliezer, eds., MRI (Beer-Sheva), Dead Sea, 2000, pp. 27–34. A. Stich and H.G. Haldenwanger: in Magnesium 2000 (2nd Israeli Intl. Conf. on Magnesium Science and Technology), E. Aghion and D. Eliezer, eds., MRI (Beer-Sheva), Dead Sea, 2000, pp. 27–34.
47.
48.
Zurück zum Zitat F.E. Hauser, P.R. Landon, J.E. Dorn, AIME Trans., 206 (1956) 589-93. F.E. Hauser, P.R. Landon, J.E. Dorn, AIME Trans., 206 (1956) 589-93.
50.
Zurück zum Zitat U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci., 19 (1975) 1-278.CrossRef U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci., 19 (1975) 1-278.CrossRef
51.
Zurück zum Zitat T.N. Baker, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 235-73. T.N. Baker, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 235-73.
53.
Zurück zum Zitat K.J. Kurzydlowski, J.J. Bucki, Acta Metall. Mater., 41 (1993) 3141-46.CrossRef K.J. Kurzydlowski, J.J. Bucki, Acta Metall. Mater., 41 (1993) 3141-46.CrossRef
54.
55.
Zurück zum Zitat Y. Brechet, J.D. Embury, S. Tao, L. Luo, Acta Mater., 39 (1991) 1781-86.CrossRef Y. Brechet, J.D. Embury, S. Tao, L. Luo, Acta Mater., 39 (1991) 1781-86.CrossRef
56.
Zurück zum Zitat C.H. Cáceres, J.R. Griffiths, P. Reiner, Acta Mater., 44 (1996) 15-23.CrossRef C.H. Cáceres, J.R. Griffiths, P. Reiner, Acta Mater., 44 (1996) 15-23.CrossRef
Metadaten
Titel
Strengthening Micromechanisms in Cold-Chamber High-Pressure Die-Cast Mg-Al Alloys
verfasst von
Kun V. Yang
Carlos H. Cáceres
Mark A. Easton
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2326-x

Weitere Artikel der Ausgabe 9/2014

Metallurgical and Materials Transactions A 9/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.