Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2017

27.02.2017

On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

verfasst von: Daniel M. Field, Daniel S. Baker, David C. Van Aken

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, \( \Delta G_{\text{Chem}}^{\gamma \to \alpha } \). In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young’s moduli (E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young’s modulus using alloy composition and was used where dilatometry literature did not report Young’s moduli. A comparison of the \( \Delta G_{\text{Chem}}^{\gamma \to \alpha } \) normalized by dividing by the product of Young’s modulus, unconstrained lattice misfit squared (δ 2), and molar volume (Ω) with respect to the measured α-martensite start temperatures, \( M_{\text{S}}^{\alpha } \), produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as \( \Delta G_{\text{str}}^{\gamma \to \alpha } \left( {{\text{J}}/{\text{mol}}} \right) = E\varOmega \delta^{2} (14.8 - 0.013T) \), which opposed the chemical driving force for α-martensite formation. \( M_{\text{S}}^{\alpha } \) was determined at a temperature where \( \Delta G_{\text{Chem}}^{\gamma \to \alpha } + \Delta G_{\text{str}}^{\gamma \to \alpha } = 0 \). The proposed \( M_{\text{S}}^{\alpha } \) model shows an extended temperature range of prediction from 170 K to 820 K (−103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ε-martensite, using the difference between the calculated \( M_{\text{S}}^{\varepsilon } \) and \( M_{\text{S}}^{\alpha } \).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Q. Li, X. Huang, and W. Huang, Met. Sci. Eng., 2016 vol. 662, pp. 129-135CrossRef Q. Li, X. Huang, and W. Huang, Met. Sci. Eng., 2016 vol. 662, pp. 129-135CrossRef
2.
Zurück zum Zitat D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: Proceedings of the Intl. Symp. on New Developments in Advanced High-Strength Steels, Vail, Colorado. 2013. pp. 119–29. D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: Proceedings of the Intl. Symp. on New Developments in Advanced High-Strength Steels, Vail, Colorado. 2013. pp. 119–29.
3.
Zurück zum Zitat [3] M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4634-4643.CrossRef [3] M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4634-4643.CrossRef
4.
Zurück zum Zitat S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: AIST2014 Proceedings, pp. 3013–23 S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: AIST2014 Proceedings, pp. 3013–23
5.
Zurück zum Zitat [5] A.J. Clark, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Acta Materialia, 2008, vol. 56, pp. 16-22CrossRef [5] A.J. Clark, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Acta Materialia, 2008, vol. 56, pp. 16-22CrossRef
6.
Zurück zum Zitat [6] M.J. Santofimia, L. Zhao, and J. Sietsma, Met Trans A, 2011, vol. 42A, pp.3620-3626CrossRef [6] M.J. Santofimia, L. Zhao, and J. Sietsma, Met Trans A, 2011, vol. 42A, pp.3620-3626CrossRef
7.
Zurück zum Zitat [7] E. De Moor, S. Lacroix, A.J. Clark, J. Penning, and J.G. Speer, Met Trans A., 2008, Vol.39A, pp.2586-2595CrossRef [7] E. De Moor, S. Lacroix, A.J. Clark, J. Penning, and J.G. Speer, Met Trans A., 2008, Vol.39A, pp.2586-2595CrossRef
8.
Zurück zum Zitat O. Grassel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys., 1997, vol. 7, pp. 383–88.CrossRef O. Grassel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys., 1997, vol. 7, pp. 383–88.CrossRef
9.
Zurück zum Zitat [9] D. M. Field, D.C. Van Aken, Met Trans A., 2016 vol. 47A pp.1912-1917CrossRef [9] D. M. Field, D.C. Van Aken, Met Trans A., 2016 vol. 47A pp.1912-1917CrossRef
10.
Zurück zum Zitat [10] M. Acet, T. Schneider, B. Gehrmann, and E.F. Wasserman, Journal De Physique., 1995, Vol 5, pp. 379-384 [10] M. Acet, T. Schneider, B. Gehrmann, and E.F. Wasserman, Journal De Physique., 1995, Vol 5, pp. 379-384
11.
Zurück zum Zitat [11] A. Holden, J.D. Bolton, and E.R. Petty, Journal of Iron and Steel Inst., 1971, vol. 209, pp.721-728 [11] A. Holden, J.D. Bolton, and E.R. Petty, Journal of Iron and Steel Inst., 1971, vol. 209, pp.721-728
12.
Zurück zum Zitat [12] N.I Medvedeva, M.S Park, D.C. Van Aken, and J.E. Medvedeva, J. Alloys Compd., 2014, vol. 582, pp. 475-482CrossRef [12] N.I Medvedeva, M.S Park, D.C. Van Aken, and J.E. Medvedeva, J. Alloys Compd., 2014, vol. 582, pp. 475-482CrossRef
13.
Zurück zum Zitat [13] G.R. Speich, A.J. Schwoeble, and W.C. Leslie, Met. Trans., 1972 vol. 3 pp. 2031-2037CrossRef [13] G.R. Speich, A.J. Schwoeble, and W.C. Leslie, Met. Trans., 1972 vol. 3 pp. 2031-2037CrossRef
14.
Zurück zum Zitat [14] B.C. De Cooman and J.G. Speer, “Austenite Decomposition in Fe-C-X Alloy Systems,” Fundamentals of Steel Product Physical Metallurgy, 1st Edition, ASM International, Materials Park, OH, 2011, p. 173 [14] B.C. De Cooman and J.G. Speer, “Austenite Decomposition in Fe-C-X Alloy Systems,” Fundamentals of Steel Product Physical Metallurgy, 1st Edition, ASM International, Materials Park, OH, 2011, p. 173
15.
Zurück zum Zitat [15] Z. Jicheng, and J. Zhanpeng, Acta Metall. Mater., 1990, vol. 38, pp. 425-431CrossRef [15] Z. Jicheng, and J. Zhanpeng, Acta Metall. Mater., 1990, vol. 38, pp. 425-431CrossRef
16.
Zurück zum Zitat [16] V. Raghavan and D. Anita, Metall. Mater. Trans A, 1996, vol. 27A, pp. 1127-1132CrossRef [16] V. Raghavan and D. Anita, Metall. Mater. Trans A, 1996, vol. 27A, pp. 1127-1132CrossRef
17.
Zurück zum Zitat [17] K.W. Andrews, J. Iron Steel Inst., 1965, vol 203, pp. 721-727 [17] K.W. Andrews, J. Iron Steel Inst., 1965, vol 203, pp. 721-727
18.
Zurück zum Zitat [18] A. Stromvinter, A. Borgenstam, and J. Ågren, Met. Trans. A, 2012, vol. 43A pp. 3870-3879CrossRef [18] A. Stromvinter, A. Borgenstam, and J. Ågren, Met. Trans. A, 2012, vol. 43A pp. 3870-3879CrossRef
19.
Zurück zum Zitat M. Palumbo, Computer Coupling of Phase Diagram and Thermochemistry, 2008, pp. 693–708. M. Palumbo, Computer Coupling of Phase Diagram and Thermochemistry, 2008, pp. 693–708.
20.
Zurück zum Zitat G.B. Olson and M. Cohen: Met. Trans. A, 1976, vol. 7, pp. 1905-1914 G.B. Olson and M. Cohen: Met. Trans. A, 1976, vol. 7, pp. 1905-1914
21.
Zurück zum Zitat G.B. Olsen and M. Cohen: Met Trans A, 1976, vol. 7 pp. 1897-1904 G.B. Olsen and M. Cohen: Met Trans A, 1976, vol. 7 pp. 1897-1904
22.
Zurück zum Zitat [20] S.T. Pisarik and D.C. Van Aken, Met Trans A., 2016, vol. 47A pp1009-1018CrossRef [20] S.T. Pisarik and D.C. Van Aken, Met Trans A., 2016, vol. 47A pp1009-1018CrossRef
23.
Zurück zum Zitat [23] M. Grujicic, G. B. Olson and W. S. Owen, Metall. Trans A., 1985, vol. 16A, 1713-22CrossRef [23] M. Grujicic, G. B. Olson and W. S. Owen, Metall. Trans A., 1985, vol. 16A, 1713-22CrossRef
24.
Zurück zum Zitat [24] L. Kaufman, and M. Cohen, Progr. Metal. Phy. 1958, vol. 7, pp. 165-246CrossRef [24] L. Kaufman, and M. Cohen, Progr. Metal. Phy. 1958, vol. 7, pp. 165-246CrossRef
25.
Zurück zum Zitat [25] J.S. Bowles and A.J. Morton, Acta Metall., 1964, vol. 12, p.629-37CrossRef [25] J.S. Bowles and A.J. Morton, Acta Metall., 1964, vol. 12, p.629-37CrossRef
26.
Zurück zum Zitat [26] J.F. Breedis and L. Kaufman, Metall. Trans., 1971, vol. 2, pp. 2359-2371CrossRef [26] J.F. Breedis and L. Kaufman, Metall. Trans., 1971, vol. 2, pp. 2359-2371CrossRef
27.
Zurück zum Zitat [27] Y.K.Lee and C.S.Choi, Metall. Mater. Trans A, 2000, vol. 31A, pp. 355-360CrossRef [27] Y.K.Lee and C.S.Choi, Metall. Mater. Trans A, 2000, vol. 31A, pp. 355-360CrossRef
28.
Zurück zum Zitat [28] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Mater. Sci. Eng. A, 2004, vols. 387-389, pp. 158-162CrossRef [28] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Mater. Sci. Eng. A, 2004, vols. 387-389, pp. 158-162CrossRef
29.
Zurück zum Zitat [29] W.S. Yang, and C.M. Wan, J. Mater. Sci., 1990, vol. 25, pp. 1821-1823CrossRef [29] W.S. Yang, and C.M. Wan, J. Mater. Sci., 1990, vol. 25, pp. 1821-1823CrossRef
30.
Zurück zum Zitat S.T. Pisarik, MS thesis, Missouri University of Science and Technology 2014. S.T. Pisarik, MS thesis, Missouri University of Science and Technology 2014.
35.
Zurück zum Zitat [35] A. T.Disndale SGTE Data for pure elements, CALPHAD, 1991, vol. 15, pp. 317-425.CrossRef [35] A. T.Disndale SGTE Data for pure elements, CALPHAD, 1991, vol. 15, pp. 317-425.CrossRef
36.
Zurück zum Zitat ASTM E 8/E 8M-08, Standard Test Methods for Tension Testing of Metallic Materials ASTM E 8/E 8M-08, Standard Test Methods for Tension Testing of Metallic Materials
37.
Zurück zum Zitat [37] S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja, J. Appl. Crystallogr., 2011, vol. 44, pp. 779-787CrossRef [37] S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja, J. Appl. Crystallogr., 2011, vol. 44, pp. 779-787CrossRef
38.
Zurück zum Zitat [38] U.R. Lenel and B.R. Knott, Met Trans A., 1987, vol. 18A, pp. 767-775CrossRef [38] U.R. Lenel and B.R. Knott, Met Trans A., 1987, vol. 18A, pp. 767-775CrossRef
39.
Zurück zum Zitat [39] M.C. Somani, D.A. Porter, L.P. Karjalainen, and R.D.K. Misra, Met Trans A., 2014, vol. 45A, pp. 1247-1257CrossRef [39] M.C. Somani, D.A. Porter, L.P. Karjalainen, and R.D.K. Misra, Met Trans A., 2014, vol. 45A, pp. 1247-1257CrossRef
40.
Zurück zum Zitat [40] K. Tsuzaki, S. Fukasaku, Y. Tomota, and T. Maki. Mater Transaction. 1991, vol. 32, pp. 222-228CrossRef [40] K. Tsuzaki, S. Fukasaku, Y. Tomota, and T. Maki. Mater Transaction. 1991, vol. 32, pp. 222-228CrossRef
41.
Zurück zum Zitat [41] S. Cotes, M. Sade, and A. F. Guillermet, Met Trans A., 1995, vol. 26A, pp. 1957-1969CrossRef [41] S. Cotes, M. Sade, and A. F. Guillermet, Met Trans A., 1995, vol. 26A, pp. 1957-1969CrossRef
42.
Zurück zum Zitat Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Lou, and Z.Z. Yuan: Mater. Charact., 2004, vol. 52, pp. 349-354CrossRef Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Lou, and Z.Z. Yuan: Mater. Charact., 2004, vol. 52, pp. 349-354CrossRef
43.
Zurück zum Zitat [43] S. Lee, and B.C. De Cooman, Met Trans A., 2016, vol. 47A, pp. 3263-3270CrossRef [43] S. Lee, and B.C. De Cooman, Met Trans A., 2016, vol. 47A, pp. 3263-3270CrossRef
44.
Zurück zum Zitat [44] G.Ghosh and G.B. Olson, Acta Materialia, 2002, Vol. 50, pp. 2655-2675CrossRef [44] G.Ghosh and G.B. Olson, Acta Materialia, 2002, Vol. 50, pp. 2655-2675CrossRef
46.
Zurück zum Zitat [46] G. Ghosh and G.B. Olson, Acta Materialia, 1993,Vol. 42, pp.3361-3370CrossRef [46] G. Ghosh and G.B. Olson, Acta Materialia, 1993,Vol. 42, pp.3361-3370CrossRef
47.
Zurück zum Zitat [47] S. T. Pisarik, and D. C. Van Aken, Met Trans A., 2014, vol. 45, pp. 3173-3178CrossRef [47] S. T. Pisarik, and D. C. Van Aken, Met Trans A., 2014, vol. 45, pp. 3173-3178CrossRef
48.
Zurück zum Zitat M. Atkins: Atlas of continuous cooling transformation diagrams for engineering steels, ASM, (1980) M. Atkins: Atlas of continuous cooling transformation diagrams for engineering steels, ASM, (1980)
49.
Zurück zum Zitat E. Yang, H. Zurob, and J. McDermid: Proc. of MS&T’10, 2010, pp. 438–46 E. Yang, H. Zurob, and J. McDermid: Proc. of MS&T’10, 2010, pp. 438–46
50.
Zurück zum Zitat [50] J-C. Kim, D-W. Han, S-H. Baik, and Y-K Lee, Mater. Sci. & Eng., 2004, vol. 378 pp. 323-327CrossRef [50] J-C. Kim, D-W. Han, S-H. Baik, and Y-K Lee, Mater. Sci. & Eng., 2004, vol. 378 pp. 323-327CrossRef
51.
Zurück zum Zitat [51] K.R. Limmer, J.E. Medvedeva, D.C. Van Aken, and N.I. Medvedeva Computational Materials Science, 2015, vol. 99, pp. 253-255CrossRef [51] K.R. Limmer, J.E. Medvedeva, D.C. Van Aken, and N.I. Medvedeva Computational Materials Science, 2015, vol. 99, pp. 253-255CrossRef
53.
Zurück zum Zitat [53] R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, p. 1345CrossRef [53] R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, p. 1345CrossRef
54.
Zurück zum Zitat [54] L.M. Kaputkina, V.G. Prokoshkina, and N.A. Krysina: Metals, 2001, vol. 6, p. 80. [54] L.M. Kaputkina, V.G. Prokoshkina, and N.A. Krysina: Metals, 2001, vol. 6, p. 80.
55.
Zurück zum Zitat [55] T. De Cock, C. Capdevila, F.G. Caballero, and C. Garcia de Andres, Scripta Materiallia, 2006, vol. 54 pp.949-954CrossRef [55] T. De Cock, C. Capdevila, F.G. Caballero, and C. Garcia de Andres, Scripta Materiallia, 2006, vol. 54 pp.949-954CrossRef
56.
Zurück zum Zitat [56] H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh, CALPHAD, 2012, vol. 36, pp. 16-22CrossRef [56] H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh, CALPHAD, 2012, vol. 36, pp. 16-22CrossRef
57.
Zurück zum Zitat [57] J.H. Jun and C.S. Choi, Mater. Sci. Eng. A 1998, vol. 257, pp. 535-556CrossRef [57] J.H. Jun and C.S. Choi, Mater. Sci. Eng. A 1998, vol. 257, pp. 535-556CrossRef
58.
Zurück zum Zitat [58] S Takaki, H Nakatsu, and T Tokunaga: Mater. Trans. JIM, 1993, vol. 34, pp. 489–95.CrossRef [58] S Takaki, H Nakatsu, and T Tokunaga: Mater. Trans. JIM, 1993, vol. 34, pp. 489–95.CrossRef
59.
Zurück zum Zitat [59] P.Y. Volosevich, V.N. Gridnev, and Y.N. Petrov: Phys. Met. Metallogr., 1975, vol. 40, pp. 554–59. [59] P.Y. Volosevich, V.N. Gridnev, and Y.N. Petrov: Phys. Met. Metallogr., 1975, vol. 40, pp. 554–59.
Metadaten
Titel
On the Prediction of α-Martensite Temperatures in Medium Manganese Steels
verfasst von
Daniel M. Field
Daniel S. Baker
David C. Van Aken
Publikationsdatum
27.02.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2017
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-017-4020-2

Weitere Artikel der Ausgabe 5/2017

Metallurgical and Materials Transactions A 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.