Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2018

06.06.2018

A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting

verfasst von: J. L. Tan, C. Tang, C. H. Wong

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser melting (SLM) is a powder-bed additive manufacturing process that uses laser to melt powders, layer by layer to generate a functional 3D part. There are many different parameters, such as laser power, scanning speed, and layer thickness, which play a role in determining the quality of the printed part. These parameters contribute to the energy density applied on the powder bed. Defects arise when insufficient or excess energy density is applied. A common defect in these cases is the presence of porosity. This paper studies the formation of porosities when inappropriate energy densities are used. A computational model was developed to simulate the melting and solidification process of SS316L powders in the SLM process. Three different sets of process parameters were used to produce 800-µm-long melt tracks, and the characteristics of the porosities were analyzed. It was found that when low energy density parameters were used, the pores were found to be irregular in shapes and were located near the top surface of the powder bed. However, when high energy density parameters were used, the pores were either elliptical or spherical in shapes and were usually located near the bottom of the keyholes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. Wang, Y. Shin, S. Zhang and P. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.CrossRef W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. Wang, Y. Shin, S. Zhang and P. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015.CrossRef
2.
Zurück zum Zitat I. Gibson, D. W. Rosen and B. Stucker, Additive manufacturing technologies, vol. 238. New York: Springer 2010.CrossRef I. Gibson, D. W. Rosen and B. Stucker, Additive manufacturing technologies, vol. 238. New York: Springer 2010.CrossRef
3.
Zurück zum Zitat K. K. Wong, J. Y. Ho, K. C. Leong and T. N. Wong, “Fabrication of heat sinks by selective laser melting for convective heat transfer applications,” Virtual and Physical Prototyping, vol. 11, no. 3, pp. 159-165, 2016.CrossRef K. K. Wong, J. Y. Ho, K. C. Leong and T. N. Wong, “Fabrication of heat sinks by selective laser melting for convective heat transfer applications,” Virtual and Physical Prototyping, vol. 11, no. 3, pp. 159-165, 2016.CrossRef
4.
Zurück zum Zitat C. K. Chua, C.H. Wong and W. Y. Yeong, Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing, USA: Academic Press, 2017.CrossRef C. K. Chua, C.H. Wong and W. Y. Yeong, Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing, USA: Academic Press, 2017.CrossRef
5.
Zurück zum Zitat L. Thijs, F. Verhaeghe, T. Craeghs, J. Humbeeck and J. Kruth, “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V,” Acta Materialia, vol 58, no. 9, pp. 3303-3312, 2010.CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J. Humbeeck and J. Kruth, “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V,” Acta Materialia, vol 58, no. 9, pp. 3303-3312, 2010.CrossRef
6.
Zurück zum Zitat D. K. Do and P. Li, “The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting,” Virtual and Physical Prototyping, vol. 11, no. 3, pp. 41-47, 2016.CrossRef D. K. Do and P. Li, “The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting,” Virtual and Physical Prototyping, vol. 11, no. 3, pp. 41-47, 2016.CrossRef
7.
Zurück zum Zitat C. Y. Yap, C. K. Chua and Z. L. Dong, “An effective analytical model of selective laser melting,” Virtual and Physical Prototyping, vol. 11, no. 1, pp. 21-26, 2016.CrossRef C. Y. Yap, C. K. Chua and Z. L. Dong, “An effective analytical model of selective laser melting,” Virtual and Physical Prototyping, vol. 11, no. 1, pp. 21-26, 2016.CrossRef
8.
Zurück zum Zitat I. Yadroitsev, P. Bertrand and I. Smurov, “Parametric analysis of the selective laser melting process,” Applied Surface Science, vol. 253, no. 19, pp. 8064-8069, 2007.CrossRef I. Yadroitsev, P. Bertrand and I. Smurov, “Parametric analysis of the selective laser melting process,” Applied Surface Science, vol. 253, no. 19, pp. 8064-8069, 2007.CrossRef
9.
Zurück zum Zitat A. T. Sutton, C. S. Kriewall, M. C. Leu and J. W. Newkirk, “Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 3-29, 2017.CrossRef A. T. Sutton, C. S. Kriewall, M. C. Leu and J. W. Newkirk, “Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes,” Virtual and Physical Prototyping, vol. 12, no. 1, pp. 3-29, 2017.CrossRef
10.
Zurück zum Zitat B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process. in Solid Freeform Fabrication Symposium, Austin, Texas, 2011. B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process. in Solid Freeform Fabrication Symposium, Austin, Texas, 2011.
11.
Zurück zum Zitat N. Read, W. Wang, K. Essa and M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Materials & Design, vol. 65, pp. 417-424, 2015.CrossRef N. Read, W. Wang, K. Essa and M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Materials & Design, vol. 65, pp. 417-424, 2015.CrossRef
12.
Zurück zum Zitat C.H. Fu and Y.B. Guo. 3-Dimensional Finite Element Modeling of Selective Laser Melting Ti-6Al-4V Alloy. 3-Dimensional Finite Element 25th Annual International Solid Freeform Fabrication Symposium, 2014. C.H. Fu and Y.B. Guo. 3-Dimensional Finite Element Modeling of Selective Laser Melting Ti-6Al-4V Alloy. 3-Dimensional Finite Element 25th Annual International Solid Freeform Fabrication Symposium, 2014.
13.
Zurück zum Zitat C. Tang, B. Li, and C. H. Wong, Selective laser melting of metal powders studied by molecular dynamics simulation. in 1st International Conference on Progress in Additive Manufacturing, Singapore, 2014. C. Tang, B. Li, and C. H. Wong, Selective laser melting of metal powders studied by molecular dynamics simulation. in 1st International Conference on Progress in Additive Manufacturing, Singapore, 2014.
14.
Zurück zum Zitat F.J. Gürtler, M. Karg, K. H. Leitz and M. Schmidt, “Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Physics Procedia, vol. 41, pp. 881-886, 2013.CrossRef F.J. Gürtler, M. Karg, K. H. Leitz and M. Schmidt, “Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Physics Procedia, vol. 41, pp. 881-886, 2013.CrossRef
15.
Zurück zum Zitat F.J. Gürtler, M. Karg, M. Dobler, S. Kohl, I. Tzivilsky, and M. Schmidt, Influence of powder distribution on process stability in laser beam melting: analysis of melt pool dynamics by numerical simulations. in Solid freeform fabrication symposium, Austin, 2014. F.J. Gürtler, M. Karg, M. Dobler, S. Kohl, I. Tzivilsky, and M. Schmidt, Influence of powder distribution on process stability in laser beam melting: analysis of melt pool dynamics by numerical simulations. in Solid freeform fabrication symposium, Austin, 2014.
16.
Zurück zum Zitat A. M. Rausch, V. E. Küng, C. Pobel, M. Markl and C. Körner, “Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density,” Materials, vol. 10, no. 10, p. 1117, 2017.CrossRef A. M. Rausch, V. E. Küng, C. Pobel, M. Markl and C. Körner, “Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density,” Materials, vol. 10, no. 10, p. 1117, 2017.CrossRef
17.
Zurück zum Zitat D. Gu and Y. Shen, “Balling phenomena during direct laser sintering of multi-component Cu-based metal powder,” Journal of Alloys and Compounds, vol. 432, no. 1-2, pp. 136-166, 2007. D. Gu and Y. Shen, “Balling phenomena during direct laser sintering of multi-component Cu-based metal powder,” Journal of Alloys and Compounds, vol. 432, no. 1-2, pp. 136-166, 2007.
18.
Zurück zum Zitat J. Kruth, L. Froyen, J. V. Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers, “Selective laser melting of iron-based powder,” Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 616-622, 2004.CrossRef J. Kruth, L. Froyen, J. V. Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers, “Selective laser melting of iron-based powder,” Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 616-622, 2004.CrossRef
19.
Zurück zum Zitat A. Simchi and H. Pohl, “Effects of laser sintering processing parameters on the microstructure and densification of iron powder,” Materials Science and Engineering: A, vol. 359, no. 1-1, pp. 119-128, 2003.CrossRef A. Simchi and H. Pohl, “Effects of laser sintering processing parameters on the microstructure and densification of iron powder,” Materials Science and Engineering: A, vol. 359, no. 1-1, pp. 119-128, 2003.CrossRef
20.
Zurück zum Zitat H. Niu and I. Chang, “Liquid phase sintering of M3/2 high speed steel by selective laser sintering,” Scripta Materialia, vol. 39, no. 1, pp. 67-72, 1998.CrossRef H. Niu and I. Chang, “Liquid phase sintering of M3/2 high speed steel by selective laser sintering,” Scripta Materialia, vol. 39, no. 1, pp. 67-72, 1998.CrossRef
21.
Zurück zum Zitat R. Li, J. Liu, Y. Shi, L. Wang and W. Jiang, “Balling behavior of stainless steel and nickel powder during selective laser melting process,” The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9-12, pp. 1025-1035, 2011. R. Li, J. Liu, Y. Shi, L. Wang and W. Jiang, “Balling behavior of stainless steel and nickel powder during selective laser melting process,” The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9-12, pp. 1025-1035, 2011.
22.
Zurück zum Zitat N. Aboulkhair, N. Everitt, I. Ashcroft and C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting,” Additive Manufacturing, Vols. 1-4, pp. 77-86, 2014.CrossRef N. Aboulkhair, N. Everitt, I. Ashcroft and C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting,” Additive Manufacturing, Vols. 1-4, pp. 77-86, 2014.CrossRef
23.
Zurück zum Zitat Q. Y. Lu and C. H. Wong, “Applications of non-destructive testing techniques for post-process control of additively manufactured parts,” Virtual and Physical Prototyping, vol. 12, no. 4, pp. 301-321, 2017.CrossRef Q. Y. Lu and C. H. Wong, “Applications of non-destructive testing techniques for post-process control of additively manufactured parts,” Virtual and Physical Prototyping, vol. 12, no. 4, pp. 301-321, 2017.CrossRef
24.
Zurück zum Zitat K. Monroy, J. Delgado and J. Ciurana, “Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process,” Procedia Engineering,, vol. 63, pp. 361-369, 2013.CrossRef K. Monroy, J. Delgado and J. Ciurana, “Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process,” Procedia Engineering,, vol. 63, pp. 361-369, 2013.CrossRef
25.
Zurück zum Zitat M. Gan and C. H. Wong, “Properties of selective laser melted spodumene glass-ceramic,” Journal of the European Ceramic Society, vol. 37, no. 13, pp. 4147-4154, 2017.CrossRef M. Gan and C. H. Wong, “Properties of selective laser melted spodumene glass-ceramic,” Journal of the European Ceramic Society, vol. 37, no. 13, pp. 4147-4154, 2017.CrossRef
26.
Zurück zum Zitat M. Garibaldi, I. Ashcroft, M. Simonelli and R. Hague, “Metallurgy of high-silicon steel parts produced using Selective Laser Melting,” Acta Materialia, vol. 110, pp. 207-216, 2016.CrossRef M. Garibaldi, I. Ashcroft, M. Simonelli and R. Hague, “Metallurgy of high-silicon steel parts produced using Selective Laser Melting,” Acta Materialia, vol. 110, pp. 207-216, 2016.CrossRef
27.
Zurück zum Zitat G. Kasperovich and J. Hausmann, “Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting,” Journal of Materials Processing Technology, vol. 220, pp. 202-214, 2015.CrossRef G. Kasperovich and J. Hausmann, “Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting,” Journal of Materials Processing Technology, vol. 220, pp. 202-214, 2015.CrossRef
28.
Zurück zum Zitat P. Sun, Z. Fang, Y. Zhang and Y. Xia, “Review of the Methods for Production of Spherical Ti and Ti Alloy Powder.,” The Journal of The Minerals, Metals & Materials Society, vol. 69, no. 10, pp. 1853-1860, 2017.CrossRef P. Sun, Z. Fang, Y. Zhang and Y. Xia, “Review of the Methods for Production of Spherical Ti and Ti Alloy Powder.,” The Journal of The Minerals, Metals & Materials Society, vol. 69, no. 10, pp. 1853-1860, 2017.CrossRef
29.
Zurück zum Zitat A. Simchi, “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 148-158, 2006.CrossRef A. Simchi, “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 148-158, 2006.CrossRef
30.
Zurück zum Zitat M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead Publishing, 2016. M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead Publishing, 2016.
32.
Zurück zum Zitat S. Haeri, Y. Wang, O. Ghita and J. Sun, “Discrete element simulation and experimental study of powder spreading process in additive manufacturing.,” Powder Technology, vol. 306, pp. 45-54, 2017.CrossRef S. Haeri, Y. Wang, O. Ghita and J. Sun, “Discrete element simulation and experimental study of powder spreading process in additive manufacturing.,” Powder Technology, vol. 306, pp. 45-54, 2017.CrossRef
33.
Zurück zum Zitat Y. Lee and W. Zhang, “Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion.,” Additive Manufacturing, vol. 12, pp. 178-188, 2016.CrossRef Y. Lee and W. Zhang, “Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion.,” Additive Manufacturing, vol. 12, pp. 178-188, 2016.CrossRef
34.
Zurück zum Zitat C. Qiu, C. Panwisawas, M. Ward, H. Basoalto, J. Brooks and M. Attallah, “On the role of melt flow into the surface structure and porosity development during selective laser melting,” Acta Materialia, vol. 96, pp. 72-79, 2015.CrossRef C. Qiu, C. Panwisawas, M. Ward, H. Basoalto, J. Brooks and M. Attallah, “On the role of melt flow into the surface structure and porosity development during selective laser melting,” Acta Materialia, vol. 96, pp. 72-79, 2015.CrossRef
35.
Zurück zum Zitat F. Rösler and D. Brüggemann, “Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments,” Heat and Mass Transfer, vol. 47, no. 8, pp. 1027-1033, 2011.CrossRef F. Rösler and D. Brüggemann, “Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments,” Heat and Mass Transfer, vol. 47, no. 8, pp. 1027-1033, 2011.CrossRef
36.
Zurück zum Zitat V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709-1719, 1987.CrossRef V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” International Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709-1719, 1987.CrossRef
37.
Zurück zum Zitat Z. Gałązka and H. Wilke, “Influence of Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method,” Journal of Crystal Growth, vol. 216, no. 1-4, pp. 389-398, 2000. Z. Gałązka and H. Wilke, “Influence of Marangoni convection on the flow pattern in the melt during growth of Y3Al5O12 single crystals by the Czochralski method,” Journal of Crystal Growth, vol. 216, no. 1-4, pp. 389-398, 2000.
38.
Zurück zum Zitat J. Cho, D. Farson, J. Milewski and K. Hollis, “Weld pool flows during initial stages of keyhole formation in laser welding,” Journal of Physics D: Applied Physics, vol. 42, no. 17, p. 175502, 2009.CrossRef J. Cho, D. Farson, J. Milewski and K. Hollis, “Weld pool flows during initial stages of keyhole formation in laser welding,” Journal of Physics D: Applied Physics, vol. 42, no. 17, p. 175502, 2009.CrossRef
39.
Zurück zum Zitat IAE Agency: Thermophysical properties of materials for nuclear engineering. IAEA, Vienna, 2008 IAE Agency: Thermophysical properties of materials for nuclear engineering. IAEA, Vienna, 2008
40.
Zurück zum Zitat C. Kamath, B. El-dasher, G. Gallegos, W. King and A. Sisto, “Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W,” The International Journal of Advanced Manufacturing Technology, vol. 74, no. 1-4, pp. 65-78, 2014.CrossRef C. Kamath, B. El-dasher, G. Gallegos, W. King and A. Sisto, “Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W,” The International Journal of Advanced Manufacturing Technology, vol. 74, no. 1-4, pp. 65-78, 2014.CrossRef
41.
Zurück zum Zitat S. Fujinaga, H. Takenaka, T. Narikiyo, S. Katayama and A. Matsunawa, “Direct observation of keyhole behaviour during pulse modulated high-power Nd:YAG laser irradiation,” Journal of Physics D: Applied Physics, vol. 33, no. 5, pp. 492-497, 2000.CrossRef S. Fujinaga, H. Takenaka, T. Narikiyo, S. Katayama and A. Matsunawa, “Direct observation of keyhole behaviour during pulse modulated high-power Nd:YAG laser irradiation,” Journal of Physics D: Applied Physics, vol. 33, no. 5, pp. 492-497, 2000.CrossRef
42.
Zurück zum Zitat S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Materialia, vol. 108, pp. 36-45, 2016.CrossRef S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Materialia, vol. 108, pp. 36-45, 2016.CrossRef
43.
Zurück zum Zitat I. Eriksson, J. Powell and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Optics and Lasers in Engineering, vol. 51, no. 6, pp. 735-740, 2013.CrossRef I. Eriksson, J. Powell and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Optics and Lasers in Engineering, vol. 51, no. 6, pp. 735-740, 2013.CrossRef
44.
Zurück zum Zitat J. Trapp, A. M. Rubenchik, G. Guss and M. J. Matthews, “In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing,” Applied Materials Today, vol. 9, pp. 341-349, 2017.CrossRef J. Trapp, A. M. Rubenchik, G. Guss and M. J. Matthews, “In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing,” Applied Materials Today, vol. 9, pp. 341-349, 2017.CrossRef
45.
Zurück zum Zitat I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov, “Single track formation in selective laser melting of metal powders,” Journal of Materials Processing Technology, vol. 210, no. 12, pp. 1624-1631, 2010.CrossRef I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov, “Single track formation in selective laser melting of metal powders,” Journal of Materials Processing Technology, vol. 210, no. 12, pp. 1624-1631, 2010.CrossRef
46.
Zurück zum Zitat I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson and I. Smurov, “Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder,” Journal of Materials Processing Technology, vol. 213, no. 4, pp. 606-613, 2013.CrossRef I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson and I. Smurov, “Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder,” Journal of Materials Processing Technology, vol. 213, no. 4, pp. 606-613, 2013.CrossRef
47.
Zurück zum Zitat X. Zhou, X. Liu, D. Zhang, Z. Shen and W. Liu, “Balling phenomena in selective laser melted tungsten,” Journal of Materials Processing Technology, vol. 222, pp. 33-42, 2015.CrossRef X. Zhou, X. Liu, D. Zhang, Z. Shen and W. Liu, “Balling phenomena in selective laser melted tungsten,” Journal of Materials Processing Technology, vol. 222, pp. 33-42, 2015.CrossRef
48.
Zurück zum Zitat D. Gu, Y. Hagedorn, W. Meiners, G. Meng, R. Batista, K. Wissenbach and R. Poprawe, “Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Materialia, vol. 60, no. 9, pp. 3849-3860, 2012.CrossRef D. Gu, Y. Hagedorn, W. Meiners, G. Meng, R. Batista, K. Wissenbach and R. Poprawe, “Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Materialia, vol. 60, no. 9, pp. 3849-3860, 2012.CrossRef
49.
Zurück zum Zitat E. Louvis, P. Fox and C. J. Sutcliffe, “ Selective laser melting of aluminium components,” Journal of Materials Processing Technology, vol. 211, no. 2, pp. 275-284, 2011.CrossRef E. Louvis, P. Fox and C. J. Sutcliffe, “ Selective laser melting of aluminium components,” Journal of Materials Processing Technology, vol. 211, no. 2, pp. 275-284, 2011.CrossRef
50.
Zurück zum Zitat W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E. Hahn and A. M. Rubenchik, “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” Journal of Materials Processing Technology, vol. 214, no. 2, pp. 2915-2925, 2014.CrossRef W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs, D. E. Hahn and A. M. Rubenchik, “Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” Journal of Materials Processing Technology, vol. 214, no. 2, pp. 2915-2925, 2014.CrossRef
51.
Zurück zum Zitat A. Matsunawa, J. Kim, N. Seto, M. Mizutani and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” Journal of Laser Applications, vol. 10, no. 6, pp. 247-254, 1998.CrossRef A. Matsunawa, J. Kim, N. Seto, M. Mizutani and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” Journal of Laser Applications, vol. 10, no. 6, pp. 247-254, 1998.CrossRef
52.
Zurück zum Zitat A. Kumar and S. Roy, “Effect of three-dimensional melt pool convection on process characteristics during laser cladding,” Computational Materials Science, vol. 46, no. 2, pp. 495-506, 2009.CrossRef A. Kumar and S. Roy, “Effect of three-dimensional melt pool convection on process characteristics during laser cladding,” Computational Materials Science, vol. 46, no. 2, pp. 495-506, 2009.CrossRef
53.
Zurück zum Zitat G. Kasperovich, J. Haubrich, J. Gussone and G. Requena, “Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting,” Materials & Design, vol. 105, pp. 160-170, 2016.CrossRef G. Kasperovich, J. Haubrich, J. Gussone and G. Requena, “Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting,” Materials & Design, vol. 105, pp. 160-170, 2016.CrossRef
Metadaten
Titel
A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting
verfasst von
J. L. Tan
C. Tang
C. H. Wong
Publikationsdatum
06.06.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4697-x

Weitere Artikel der Ausgabe 8/2018

Metallurgical and Materials Transactions A 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.