Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 7/2020

07.05.2020

Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni–W Alloy Coatings

verfasst von: Mahesh Kumar Kolle, Shaik Shajahan, A. Basu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ni–W alloy coatings have various applications because they are capable of replacing hard chromium coatings due to their corrosion, oxidation, wear, and hardness properties. Moreover, these alloys demonstrate excellent mechanical and thermal stability at high temperatures leading to possible specialized applications of such coatings. In this study, the effect of pulse frequency and current density on the structure and properties of electrodeposited Ni–W coating were investigated. Pulse electro-co-deposition technique was employed to synthesize Ni–W alloy coatings by varying pulse frequency and current density. The deposition process was performed in the newly established deposition bath that does not contain surfactants and stress-relieving agents. The Ni–W-coated samples were evaluated to determine surface mechanical (microhardness and wear) and electrochemical properties. Phase formation, microstructure, and compositional analysis of Ni–W alloy coatings were examined by XRD, SEM, and EDS, respectively. Microstructure examination revealed that morphology of the coating varied with pulsed frequency and current density. An increase in the current density at fixed pulse frequency improved the surface mechanical properties (hardness and wear properties) owing to higher W content, fine, and dense structure of the coating. The maximum hardness (920 HV) and wear resistance were observed in the Ni–W coating that was obtained at the current density of 60 mA cm−2 and frequency of 2 kHz. Electrochemical polarization test and EIS study carried out in 3.5 wt pct NaCl solution reveal that a decrease in corrosion resistance of the coating is due to finer morphology or strained matrix whereas higher W content improves the corrosion resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F-J. He, M. Wang, and X. Lu: Trans. Nonferrous Metals Soc. China, 2006, vol. 16, pp. 1289–1294. F-J. He, M. Wang, and X. Lu: Trans. Nonferrous Metals Soc. China, 2006, vol. 16, pp. 1289–1294.
2.
Zurück zum Zitat L. Anicai: Corros. Rev, 2007, vol. 25, pp. 607–620. L. Anicai: Corros. Rev, 2007, vol. 25, pp. 607–620.
3.
Zurück zum Zitat E. Brooman: Met. Finish, 2000, vol. 98, pp. 39–45. E. Brooman: Met. Finish, 2000, vol. 98, pp. 39–45.
4.
Zurück zum Zitat S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai: Trans. Mater. Res. Soc. Jpn., 2016, vol. 41, pp. 35–39. S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai: Trans. Mater. Res. Soc. Jpn., 2016, vol. 41, pp. 35–39.
5.
Zurück zum Zitat A. Jones, J. Hamann, A. Lund, and C. Schuh: Plat. Surf. Finish, 2010, vol. 97, pp. 52. A. Jones, J. Hamann, A. Lund, and C. Schuh: Plat. Surf. Finish, 2010, vol. 97, pp. 52.
6.
Zurück zum Zitat N.P. Wasekar and G. Sundararajan: Wear, 2015, vol. 342, pp. 340–348. N.P. Wasekar and G. Sundararajan: Wear, 2015, vol. 342, pp. 340–348.
7.
Zurück zum Zitat J.L. Stojak, J. Fransaer, and J.B. Talbot: Adv. Electrochem. Sci. Eng., 2001, vol. 7, pp. 193-223. J.L. Stojak, J. Fransaer, and J.B. Talbot: Adv. Electrochem. Sci. Eng., 2001, vol. 7, pp. 193-223.
8.
Zurück zum Zitat R.K. Saha and T.I. Khan: Surf. Coat. Technol., 2010, vol. 205, pp. 890-895. R.K. Saha and T.I. Khan: Surf. Coat. Technol., 2010, vol. 205, pp. 890-895.
9.
Zurück zum Zitat M. Obradovic, J. Stevanovic, A. Despic, R. Stevanovic, and J. Stoch: J. Serb. Chem. Soc, 2001, vol. 66, pp. 899-912. M. Obradovic, J. Stevanovic, A. Despic, R. Stevanovic, and J. Stoch: J. Serb. Chem. Soc, 2001, vol. 66, pp. 899-912.
10.
Zurück zum Zitat M. Obradovic, J. Stevanovic, A.R. Despic, and R. Stevanovic: J. Serb. Chem. Soc., 1999, vol. 64, pp. 245-257. M. Obradovic, J. Stevanovic, A.R. Despic, and R. Stevanovic: J. Serb. Chem. Soc., 1999, vol. 64, pp. 245-257.
11.
Zurück zum Zitat D.R. Gabe: J. Appl. Electrochem., 1997, vol. 27, pp. 908-915. D.R. Gabe: J. Appl. Electrochem., 1997, vol. 27, pp. 908-915.
12.
Zurück zum Zitat O. Younces and E. Gileady: J. Electrochem. Soc., 2002, vol. 149, pp. 100-111. O. Younces and E. Gileady: J. Electrochem. Soc., 2002, vol. 149, pp. 100-111.
13.
Zurück zum Zitat E. Slavcheva, W. Mokwa, and U. Schnakenberg: Electrochim. Acta, 2005, vol. 50, pp. 5573-5580. E. Slavcheva, W. Mokwa, and U. Schnakenberg: Electrochim. Acta, 2005, vol. 50, pp. 5573-5580.
14.
Zurück zum Zitat I. Mizushima, P. Tang, H. Hansen, and M. Somers: Electrochim. Acta, 2005, vol. 51, pp. 888-896. I. Mizushima, P. Tang, H. Hansen, and M. Somers: Electrochim. Acta, 2005, vol. 51, pp. 888-896.
15.
Zurück zum Zitat T. Yamasaki, P. Schlossmacher, K. Ehrlich, and Y. Oginoi: NanoStruct. Mater., 1998, vol. 10, pp. 375-388. T. Yamasaki, P. Schlossmacher, K. Ehrlich, and Y. Oginoi: NanoStruct. Mater., 1998, vol. 10, pp. 375-388.
16.
Zurück zum Zitat H. Lowe, W. Ehrfeld, and J. Diebel: Proc. SPIE., 1997, vol. 168, pp. 3223-3226. H. Lowe, W. Ehrfeld, and J. Diebel: Proc. SPIE., 1997, vol. 168, pp. 3223-3226.
17.
Zurück zum Zitat V.B. Singh, L.C. Singh, and P.K. Tikoo: J. Electrochem. Soc., 1980, vol. 127, pp. 590-596. V.B. Singh, L.C. Singh, and P.K. Tikoo: J. Electrochem. Soc., 1980, vol. 127, pp. 590-596.
18.
Zurück zum Zitat https://www.enthone.com_PWA 36975: Electroplated NiW—thin deposit (Enloy Ni-500). https://www.enthone.com_PWA 36975: Electroplated NiW—thin deposit (Enloy Ni-500).
19.
Zurück zum Zitat O. Younes and E. Gileadi: Electrochem. Solid-State Lett., 2000, vol. 3, pp. 543-545. O. Younes and E. Gileadi: Electrochem. Solid-State Lett., 2000, vol. 3, pp. 543-545.
20.
Zurück zum Zitat L. Namburi: M.Sc. Thesis, Louisiana State University, 2001. L. Namburi: M.Sc. Thesis, Louisiana State University, 2001.
21.
Zurück zum Zitat M. Donten, Z. Stojek, and H. Cesiulis: J. Electrochem. Soc., 2003, vol. 150, pp. 95-98. M. Donten, Z. Stojek, and H. Cesiulis: J. Electrochem. Soc., 2003, vol. 150, pp. 95-98.
22.
Zurück zum Zitat O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and Gileadi: Langmuir., 2001, vol. 17, pp. 8270–75. O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and Gileadi: Langmuir., 2001, vol. 17, pp. 8270–75.
23.
Zurück zum Zitat L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamand, and E. Gileadi: Appl. Surf. Sci., 2002, vol. 200, pp. 1-14. L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamand, and E. Gileadi: Appl. Surf. Sci., 2002, vol. 200, pp. 1-14.
24.
Zurück zum Zitat O. Younes-Metzler, L. Zhu, and E. Gileadi: Electrochim. Acta, 2003, vol. 48 (18), pp. 2551-2562. O. Younes-Metzler, L. Zhu, and E. Gileadi: Electrochim. Acta, 2003, vol. 48 (18), pp. 2551-2562.
25.
Zurück zum Zitat M. Metikoš-Huković, Z. Grubač, N. Radić, and A. Tonejc: J. Mol. Catal. A Chem., 2006, vol. 249, pp. 172–180. M. Metikoš-Huković, Z. Grubač, N. Radić, and A. Tonejc: J. Mol. Catal. A Chem., 2006, vol. 249, pp. 172–180.
26.
Zurück zum Zitat E. Hristova, M. Mitov, R. Rashkov, M. Arnaudova, and A. Popov: Bulg. Chem. Commun, 2008, vol. 40, pp. 291–294. E. Hristova, M. Mitov, R. Rashkov, M. Arnaudova, and A. Popov: Bulg. Chem. Commun, 2008, vol. 40, pp. 291–294.
27.
Zurück zum Zitat A. Kawashima, E. Akiyama, H. Habazaki, and K. Hashimoto: Mater. Sci. Eng. A, 1997, vol. 226, pp. 905–909. A. Kawashima, E. Akiyama, H. Habazaki, and K. Hashimoto: Mater. Sci. Eng. A, 1997, vol. 226, pp. 905–909.
28.
Zurück zum Zitat G.S. Tasić, U. Lačnjevac, M.M. Tasić, M.M. Kaninski, V.M. Nikolić, D.L. Žugić, and V.D. Jović: Int. J. Hydrog. Energy, 2013, vol. 38, pp. 4291–4297. G.S. Tasić, U. Lačnjevac, M.M. Tasić, M.M. Kaninski, V.M. Nikolić, D.L. Žugić, and V.D. Jović: Int. J. Hydrog. Energy, 2013, vol. 38, pp. 4291–4297.
29.
Zurück zum Zitat C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, and V. Pérez-Herranz: Chem. Eng. Trans., 2013, vol. 32, pp. 865–870. C. González-Buch, I. Herraiz-Cardona, E.M. Ortega, J. García-Antón, and V. Pérez-Herranz: Chem. Eng. Trans., 2013, vol. 32, pp. 865–870.
30.
Zurück zum Zitat H. Cesiulis and E.J. Podlaha-Murphy: MaterialsScience (Medziagotyra), 2003, vol. 9, pp. 329-333. H. Cesiulis and E.J. Podlaha-Murphy: MaterialsScience (Medziagotyra), 2003, vol. 9, pp. 329-333.
31.
Zurück zum Zitat T. Yamasaki, P. Schloβmacher, E. Erlich, Y. Ogino: Nano Structured Mater., 1998, vol. 10, pp. 375-388. T. Yamasaki, P. Schloβmacher, E. Erlich, Y. Ogino: Nano Structured Mater., 1998, vol. 10, pp. 375-388.
32.
Zurück zum Zitat S. Shajahan and A. Basu: Int. J. Mater. Res., 2019, vol. 110, pp. 1160-1167. S. Shajahan and A. Basu: Int. J. Mater. Res., 2019, vol. 110, pp. 1160-1167.
33.
Zurück zum Zitat E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Szczerba, J. Guspiel, H. Koscielny, and M. Kot: Mater.Chem. Phys., 2016, vol. 173, pp. 524-533. E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Szczerba, J. Guspiel, H. Koscielny, and M. Kot: Mater.Chem. Phys., 2016, vol. 173, pp. 524-533.
34.
Zurück zum Zitat K.-H. Hou and Y.-C. Chen: Appl. Surf. Sci., 2011, vol. 257, pp. 6340–6346. K.-H. Hou and Y.-C. Chen: Appl. Surf. Sci., 2011, vol. 257, pp. 6340–6346.
35.
Zurück zum Zitat K.R. Sriraman, S. Ganesh-Sundara-Raman, and S.K. Seshadri: Mater. Sci. Eng. A, 2006, vol. 418, pp. 303–311. K.R. Sriraman, S. Ganesh-Sundara-Raman, and S.K. Seshadri: Mater. Sci. Eng. A, 2006, vol. 418, pp. 303–311.
36.
Zurück zum Zitat K.A. Kumar, G.P. Kalaignann, and V.S. Muralidharan: Appl. Surf. Sci., 2012, vol. 259, pp. 231–237. K.A. Kumar, G.P. Kalaignann, and V.S. Muralidharan: Appl. Surf. Sci., 2012, vol. 259, pp. 231–237.
37.
Zurück zum Zitat M.Q. Arganaraz, S. Ribotta, M. Folquer, L. Gassa, G. Benítez, M. Vela, and R. Salvarezza: Electrochim. Acta, 2011, vol. 56, pp. 5898–5903. M.Q. Arganaraz, S. Ribotta, M. Folquer, L. Gassa, G. Benítez, M. Vela, and R. Salvarezza: Electrochim. Acta, 2011, vol. 56, pp. 5898–5903.
38.
Zurück zum Zitat H. Goldasteh and S. Rastegari: Surf. Coat. Technol., 2014, vol. 259, pp. 393–400. H. Goldasteh and S. Rastegari: Surf. Coat. Technol., 2014, vol. 259, pp. 393–400.
39.
Zurück zum Zitat S. Franz, A. Marlot, P. Cavallotti, and D. Landolt: Trans. IMF, 2008, vol. 86, pp. 92–97. S. Franz, A. Marlot, P. Cavallotti, and D. Landolt: Trans. IMF, 2008, vol. 86, pp. 92–97.
40.
Zurück zum Zitat A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat: Corrosion Science, 2011, vol. 53, pp. 1066–1071. A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat: Corrosion Science, 2011, vol. 53, pp. 1066–1071.
41.
Zurück zum Zitat P.N. Wasekar, S.M. Latha, M. Ramakrishna, D.S. Rao, and G. Sundararajan: Mater. Design, 2016, vol. 112, pp. 140–150. P.N. Wasekar, S.M. Latha, M. Ramakrishna, D.S. Rao, and G. Sundararajan: Mater. Design, 2016, vol. 112, pp. 140–150.
42.
Zurück zum Zitat D. Landolt and M. Datta: Surf. Technol., 1985, vol. 25, pp. 97-110. D. Landolt and M. Datta: Surf. Technol., 1985, vol. 25, pp. 97-110.
43.
Zurück zum Zitat A.M. El-Sherik, U. Erb, and J. Page: Surf. Coat. Technol., 1997, vol. 88, pp. 70-78. A.M. El-Sherik, U. Erb, and J. Page: Surf. Coat. Technol., 1997, vol. 88, pp. 70-78.
44.
Zurück zum Zitat B.Wu, Z Liu, A Keigler, and J. Harrell: J. Electrochem. Soc., 2005, vol. 152, pp. 272–276. B.Wu, Z Liu, A Keigler, and J. Harrell: J. Electrochem. Soc., 2005, vol. 152, pp. 272–276.
45.
Zurück zum Zitat C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–443 C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–443
46.
Zurück zum Zitat Y.-K. Ko, G.-H. Chang, and J.-H. Lee: Solid State Phenomena, 2007, vol. 124-126, pp. 1589-1592. Y.-K. Ko, G.-H. Chang, and J.-H. Lee: Solid State Phenomena, 2007, vol. 124-126, pp. 1589-1592.
47.
Zurück zum Zitat M. Stern: J. Electrochem. Soc., 1958, vol. 105, pp. 638–647. M. Stern: J. Electrochem. Soc., 1958, vol. 105, pp. 638–647.
48.
Zurück zum Zitat R. Haldhar, D. Prasad, A. Saxena, and R. Kumar: Sustain. Chem. Pharmacy, 2018, vol. 9, pp. 95-105. R. Haldhar, D. Prasad, A. Saxena, and R. Kumar: Sustain. Chem. Pharmacy, 2018, vol. 9, pp. 95-105.
49.
Zurück zum Zitat R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 5230-5238. R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 5230-5238.
50.
Zurück zum Zitat R. Haldhar, D. Prasad, A. Saxena and A. Kaur: Eur. Phys. J. Plus, 2018, vol. 133, pp. 0–18. R. Haldhar, D. Prasad, A. Saxena and A. Kaur: Eur. Phys. J. Plus, 2018, vol. 133, pp. 0–18.
51.
Zurück zum Zitat R. Haldhar, D. Prasad, A. Saxena, and P. Singh: Mater. Chem. Front., 2018, vol. 2, pp. 1225-1237. R. Haldhar, D. Prasad, A. Saxena, and P. Singh: Mater. Chem. Front., 2018, vol. 2, pp. 1225-1237.
52.
Zurück zum Zitat R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 2290-301. R. Haldhar, D. Prasad, and A. Saxena: J. Environ. Chem. Eng., 2018, vol. 6, pp. 2290-301.
53.
Zurück zum Zitat R. Haldhar, D. Prasad and N. Bhardwaj: Arab. J. Sci. Eng., 2020, vol. 45, pp. 131-141. R. Haldhar, D. Prasad and N. Bhardwaj: Arab. J. Sci. Eng., 2020, vol. 45, pp. 131-141.
54.
Zurück zum Zitat R. Haldhar, D. Prasad, and N. Bhardwaj: J. Adhes. Sci. Technol., 2019, vol. 33, pp. 1169-1183. R. Haldhar, D. Prasad, and N. Bhardwaj: J. Adhes. Sci. Technol., 2019, vol. 33, pp. 1169-1183.
55.
Zurück zum Zitat A. Saxena, D. Prasad, and R. Haldhar, G. Singh and A. Kumar: J. Mol. Liq., 2018, vol. 258, pp. 89-97. A. Saxena, D. Prasad, and R. Haldhar, G. Singh and A. Kumar: J. Mol. Liq., 2018, vol. 258, pp. 89-97.
56.
Zurück zum Zitat A. Saxena, D. Prasad, and R. Haldhar: J. Mater. Sci., 2018, vol. 53, pp. 1-13. A. Saxena, D. Prasad, and R. Haldhar: J. Mater. Sci., 2018, vol. 53, pp. 1-13.
Metadaten
Titel
Effect of Electrodeposition Current and Pulse Parameter on Surface Mechanical and Electrochemical Behavior of Ni–W Alloy Coatings
verfasst von
Mahesh Kumar Kolle
Shaik Shajahan
A. Basu
Publikationsdatum
07.05.2020
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 7/2020
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05787-0

Weitere Artikel der Ausgabe 7/2020

Metallurgical and Materials Transactions A 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.