Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2021

17.08.2021 | Original Research Article

Cleanliness Control of High Nitrogen Stainless Bearing Steel by Vacuum Carbon Deoxidation in a PVIM Furnace

verfasst von: Hao Feng, Hua-Bing Li, Zhuang-Zhuang Liu, Zhou-Hua Jiang, Peng-Chong Lu, Tong He

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High cleanliness is a crucial factor determining the service performance of bearing steel. Considering the strong deoxidation ability of carbon under vacuum, vacuum carbon deoxidation was adopted in the cleanliness control of high nitrogen stainless bearing steel. In this paper, a mathematical model for vacuum carbon deoxidation during pressure/vacuum induction melting (PVIM) was proposed considering the occurrence of carbon–oxygen reaction at the free surface of molten pool and at the interface between CO bubbles and molten steel as well as crucible decomposition. The effect of electromagnetic stirring on the mass transfer of oxygen was analyzed using the finite element numerical method and the effect of CO bubbles on the deoxidation process was also considered. The influence of pressure, temperature and initial carbon content on deoxidization was studied and experimentally verified. The results indicated that the predicted variation of oxygen content in molten steel with time agreed well with the experimental results. Electromagnetic stirring effectively promoted the mass transfer of oxygen in molten steel and the carbon–oxygen reaction at free surface of molten pool was the main pathway for deoxidization. The pressure, temperature and initial carbon content influenced the vacuum carbon deoxidation process by affecting the carbon–oxygen reaction rate, crucible decomposition and mass transfer coefficient of oxygen. Finally, optimum melting parameters were recommended.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300. .CrossRef H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300. .CrossRef
2.
Zurück zum Zitat H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081. .CrossRef H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081. .CrossRef
3.
Zurück zum Zitat H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, and Z.G. Chen: Metall. Mater. Trans. A., 2019, vol. 50A(11), pp. 4987–99. .CrossRef H. Feng, H.B. Li, W.C. Jiao, Z.H. Jiang, and Z.G. Chen: Metall. Mater. Trans. A., 2019, vol. 50A(11), pp. 4987–99. .CrossRef
4.
Zurück zum Zitat W. Trojahn, E. Streit, and H.A. Chin: Materialwiss. Werkstofftech., 1999, vol. 30(10), pp. 605–11. .CrossRef W. Trojahn, E. Streit, and H.A. Chin: Materialwiss. Werkstofftech., 1999, vol. 30(10), pp. 605–11. .CrossRef
5.
Zurück zum Zitat K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32(3), pp. 1605–11. .CrossRef K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32(3), pp. 1605–11. .CrossRef
6.
Zurück zum Zitat H.H. Chung and C.C. Hsu: Adv. Mater. Res., 2011, vol. 287–290, pp. 879–82. .CrossRef H.H. Chung and C.C. Hsu: Adv. Mater. Res., 2011, vol. 287–290, pp. 879–82. .CrossRef
7.
Zurück zum Zitat V.K. Heikkinen and J.D. Boyd: Can. Metall. Quart., 2013, vol. 16(1), pp. 176–9. .CrossRef V.K. Heikkinen and J.D. Boyd: Can. Metall. Quart., 2013, vol. 16(1), pp. 176–9. .CrossRef
8.
Zurück zum Zitat P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23. .CrossRef P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23. .CrossRef
9.
Zurück zum Zitat V. Dashevskii, A. Aleksandrov, A. Kanevskii, and L. Leontev: Metall. Mater. Trans. B., 2016, vol. 47(3), pp. 1839–50. .CrossRef V. Dashevskii, A. Aleksandrov, A. Kanevskii, and L. Leontev: Metall. Mater. Trans. B., 2016, vol. 47(3), pp. 1839–50. .CrossRef
10.
Zurück zum Zitat W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54(3), pp. 536–42. .CrossRef W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54(3), pp. 536–42. .CrossRef
12.
14.
Zurück zum Zitat Z. Itoh, R. Honda, S. Takeuchi, I. Aizawa, and R. Takayanagi: Microelectron. Reliab., 2012, vol. 11(1), pp. 122–31. . Z. Itoh, R. Honda, S. Takeuchi, I. Aizawa, and R. Takayanagi: Microelectron. Reliab., 2012, vol. 11(1), pp. 122–31. .
16.
Zurück zum Zitat H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B., 2020, vol. 51(6), pp. 2976–92. .CrossRef H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B., 2020, vol. 51(6), pp. 2976–92. .CrossRef
17.
Zurück zum Zitat Z.L. Xue, Z.B. Li, J.W. Zhang, and Y.L. Gao: J. Iron Steel Res., 2003, vol. 15(5), pp. 5–8. . Z.L. Xue, Z.B. Li, J.W. Zhang, and Y.L. Gao: J. Iron Steel Res., 2003, vol. 15(5), pp. 5–8. .
18.
Zurück zum Zitat T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. Iron Steel Inst. Jpn., 1988, vol. 28(4), pp. 305–14. .CrossRef T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. Iron Steel Inst. Jpn., 1988, vol. 28(4), pp. 305–14. .CrossRef
19.
Zurück zum Zitat Z.M. You, G.G. Cheng, X.C. Wang, Z. Qin, J. Tian, and J. Zhang: Metall. Mater. Trans. B., 2015, vol. 46(1), pp. 459–72. .CrossRef Z.M. You, G.G. Cheng, X.C. Wang, Z. Qin, J. Tian, and J. Zhang: Metall. Mater. Trans. B., 2015, vol. 46(1), pp. 459–72. .CrossRef
20.
Zurück zum Zitat Y. Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, and Z.H. Jiang: Mater. Sci. Eng. A., 2020, vol. 789, p. 139587. .CrossRef Y. Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, and Z.H. Jiang: Mater. Sci. Eng. A., 2020, vol. 789, p. 139587. .CrossRef
21.
Zurück zum Zitat S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2013, vol. 33(5), pp. 389–97. .CrossRef S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2013, vol. 33(5), pp. 389–97. .CrossRef
22.
Zurück zum Zitat P.L. Walker, R.L. Taylor, and J.M. Ranish: Carbon., 1991, vol. 29(3), pp. 411–21. .CrossRef P.L. Walker, R.L. Taylor, and J.M. Ranish: Carbon., 1991, vol. 29(3), pp. 411–21. .CrossRef
23.
Zurück zum Zitat J. Feng, Y.P. Bao, X. Wu, and H. Cui: Int. J. Miner. Metall. Mater., 2010, vol. 17(5), pp. 541–5. .CrossRef J. Feng, Y.P. Bao, X. Wu, and H. Cui: Int. J. Miner. Metall. Mater., 2010, vol. 17(5), pp. 541–5. .CrossRef
24.
Zurück zum Zitat J.X. Chen: Data manual of steel making charts. 2nd ed. Metallurgical Industry Press, Beijing, 1984, pp. 753–61. J.X. Chen: Data manual of steel making charts. 2nd ed. Metallurgical Industry Press, Beijing, 1984, pp. 753–61.
25.
Zurück zum Zitat M.Y. Solar and R.I.L. Guthrie: Metall. Mater. Trans. B., 1972, vol. 3(3), pp. 713–22. .CrossRef M.Y. Solar and R.I.L. Guthrie: Metall. Mater. Trans. B., 1972, vol. 3(3), pp. 713–22. .CrossRef
26.
Zurück zum Zitat N. El-Kaddah, J. Szekely, and G. Carlsson: Metall. Trans. B., 1984, vol. 15B(4), pp. 633–40. .CrossRef N. El-Kaddah, J. Szekely, and G. Carlsson: Metall. Trans. B., 1984, vol. 15B(4), pp. 633–40. .CrossRef
27.
Zurück zum Zitat T.E. Tan: Principles of Chemical Engineering: Volume I. 4th ed. Chemical Industry Press, Beijing, 2013, pp. 16–7. T.E. Tan: Principles of Chemical Engineering: Volume I. 4th ed. Chemical Industry Press, Beijing, 2013, pp. 16–7.
28.
Zurück zum Zitat J.O. Andersson, T. Helander, L.H. Hoglund, P. Shi, and B. Sundman: Calphad., 2002, vol. 26(2), pp. 273–312. .CrossRef J.O. Andersson, T. Helander, L.H. Hoglund, P. Shi, and B. Sundman: Calphad., 2002, vol. 26(2), pp. 273–312. .CrossRef
29.
Zurück zum Zitat W.C. Jiao, H.B. Li, J. Dai, H. Feng, Z.H. Jiang, T. Zhang, D.K. Xu, H.C. Zhu, and S.C. Zhang: J. Mater. Sci. Technol., 2019, vol. 35(10), pp. 2357–64. .CrossRef W.C. Jiao, H.B. Li, J. Dai, H. Feng, Z.H. Jiang, T. Zhang, D.K. Xu, H.C. Zhu, and S.C. Zhang: J. Mater. Sci. Technol., 2019, vol. 35(10), pp. 2357–64. .CrossRef
30.
Zurück zum Zitat J. Lee, K. Yamamoto, and K. Morita: Metall. Mater. Trans. B., 2005, vol. 36B(2), pp. 241–6. .CrossRef J. Lee, K. Yamamoto, and K. Morita: Metall. Mater. Trans. B., 2005, vol. 36B(2), pp. 241–6. .CrossRef
31.
Zurück zum Zitat K.C. Mills, Z. Li, Y. Su, and R.F. Brooks: ISIJ Int., 2004, vol. 44(10), pp. 1661–8. .CrossRef K.C. Mills, Z. Li, Y. Su, and R.F. Brooks: ISIJ Int., 2004, vol. 44(10), pp. 1661–8. .CrossRef
32.
Zurück zum Zitat COMSOL Multiphysics 5.5®: Materials Database, 2020. COMSOL Multiphysics 5.5®: Materials Database, 2020.
33.
Zurück zum Zitat J.L. Meyer, N. El-Kaddah, J. Szekely, C. Vivès, and R. Ricou: Metall. Trans. B., 1987, vol. 18(3), pp. 529–38. .CrossRef J.L. Meyer, N. El-Kaddah, J. Szekely, C. Vivès, and R. Ricou: Metall. Trans. B., 1987, vol. 18(3), pp. 529–38. .CrossRef
34.
35.
Zurück zum Zitat E.S. Machlin: Trans TMS-AIME., 1960, vol. 218(2), pp. 314–26. . E.S. Machlin: Trans TMS-AIME., 1960, vol. 218(2), pp. 314–26. .
36.
Zurück zum Zitat G. Laslaz and P. Laty: AFS Trans., 1991, vol. 99, pp. 83–90. . G. Laslaz and P. Laty: AFS Trans., 1991, vol. 99, pp. 83–90. .
37.
Zurück zum Zitat H. Iwahori, K. Yonekura, Y. Yamamoto, and M. Nakamura: AFS Trans., 1990, vol. 98, pp. 167–73. . H. Iwahori, K. Yonekura, Y. Yamamoto, and M. Nakamura: AFS Trans., 1990, vol. 98, pp. 167–73. .
38.
39.
Zurück zum Zitat E. Kato: Metall. Mater. Trans. A., 1999, vol. 30(9), pp. 2449–53. .CrossRef E. Kato: Metall. Mater. Trans. A., 1999, vol. 30(9), pp. 2449–53. .CrossRef
40.
Zurück zum Zitat H.W. Zhang and Y.X. Li: Acta Phys. Sin., 2007, vol. 56(8), pp. 4864–908. .CrossRef H.W. Zhang and Y.X. Li: Acta Phys. Sin., 2007, vol. 56(8), pp. 4864–908. .CrossRef
41.
Zurück zum Zitat S. Smets, S. Parada, J. Weytjens, G. Heylen, P.T. Jones, M. Guo, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2003, vol. 30(4), pp. 293–300. .CrossRef S. Smets, S. Parada, J. Weytjens, G. Heylen, P.T. Jones, M. Guo, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2003, vol. 30(4), pp. 293–300. .CrossRef
42.
Zurück zum Zitat S. Fashu, M. Lototskyy, M.W. Davids, L. Pickering, and B.P. Tarasov: Mater. Des., 2019, vol. 186, p. 108295. .CrossRef S. Fashu, M. Lototskyy, M.W. Davids, L. Pickering, and B.P. Tarasov: Mater. Des., 2019, vol. 186, p. 108295. .CrossRef
43.
Zurück zum Zitat B.M. Amohchko: Cтaдъ, 1960, vol. 11, pp. 1002. B.M. Amohchko: Cтaдъ, 1960, vol. 11, pp. 1002.
44.
Zurück zum Zitat A.S. Gokce, C. Gurcan, S. Ozgen, and S. Aydin: Ceram. Int., 2008, vol. 34(2), pp. 323–30. .CrossRef A.S. Gokce, C. Gurcan, S. Ozgen, and S. Aydin: Ceram. Int., 2008, vol. 34(2), pp. 323–30. .CrossRef
45.
Zurück zum Zitat Z.Y. Liu, J.K. Yu, S.J. Yue, D.B. Jia, and L. Yuan: Ceram. Int., 2019, vol. 46(3), pp. 3091–8. .CrossRef Z.Y. Liu, J.K. Yu, S.J. Yue, D.B. Jia, and L. Yuan: Ceram. Int., 2019, vol. 46(3), pp. 3091–8. .CrossRef
46.
Zurück zum Zitat S. Zhang and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21(13), pp. 2393–405. .CrossRef S. Zhang and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21(13), pp. 2393–405. .CrossRef
47.
Zurück zum Zitat F. Huang, L. Zhang, Y. Zhang, and Y. Ren: Metall. Mater. Trans. B., 2017, vol. 48B(4), pp. 2195–206. .CrossRef F. Huang, L. Zhang, Y. Zhang, and Y. Ren: Metall. Mater. Trans. B., 2017, vol. 48B(4), pp. 2195–206. .CrossRef
48.
Zurück zum Zitat S. Jansson, V. Brabie, and P. Jonsson: ISIJ Int., 2006, vol. 33(5), pp. 389–97. . S. Jansson, V. Brabie, and P. Jonsson: ISIJ Int., 2006, vol. 33(5), pp. 389–97. .
Metadaten
Titel
Cleanliness Control of High Nitrogen Stainless Bearing Steel by Vacuum Carbon Deoxidation in a PVIM Furnace
verfasst von
Hao Feng
Hua-Bing Li
Zhuang-Zhuang Liu
Zhou-Hua Jiang
Peng-Chong Lu
Tong He
Publikationsdatum
17.08.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2021
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-021-02291-7

Weitere Artikel der Ausgabe 6/2021

Metallurgical and Materials Transactions B 6/2021 Zur Ausgabe

Topical Collection: Science and Technology of Molten Slags, Fluxes, and Salts

Desulfurization Behavior of Incoloy® 825 Superalloy by CaO-Al2O3-MgO-TiO2 Slag

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.