Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2022

17.11.2021 | Original Research Article

Formation of Deposited Oxide Film during the Sub-rapid Solidification of Silicon Steel Droplet and Its Effect on Interfacial Heat Transfer Behavior

verfasst von: Wanlin Wang, Dawei Cai, Cheng Lu, Peisheng Lyu, Chenyang Zhu, Jie Zeng

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The droplet solidification technique was used to investigate the formation of deposited film and the interfacial heat transfer for the sub-rapid solidification of silicon steels. The composition of deposited films consists of MnO, FeO and SiO2 for both the low and high-silicon steels. The deposited film could improve the wetting condition between the steel droplet and substrate. And the wetting condition between the droplet and substrate improves with the increasing of ejection times from 1 to 9, and thus the final contact angles decrease gradually from 105.1 to 72.8 deg. The peak value of heat flux increases with the number of solidification tests, indicating that the heat transfer condition between the droplet and substrate improves with the deposition of film. The peak value of heat flux increases from 5.64 to 7.42 MW/m2 for low-silicon steel after the 9th ejection, and it is from 6.03 to 9.06 MW/m2 for high-silicon steel. This is because the interfacial thermal resistance between the droplet and substrate reduces gradually with the increasing of test times. A higher Mn content in the high-silicon steel leads to a higher deposited rate of the oxide film than the low-silicon steel. Compared with the low-silicon steel, the increment of MnO content in the film for the high-silicon steel is 6.60 wt pct, and there is no obvious increment of SiO2 in the film, though the increment of Si in high-silicon steel is 6.06 wt pct, and for Mn is only 0.72 wt pct.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Ge, M. Isac, and R. Guthrie: ISIJ Int., 2012, vol. 52, pp. 2109–22.CrossRef S. Ge, M. Isac, and R. Guthrie: ISIJ Int., 2012, vol. 52, pp. 2109–22.CrossRef
3.
Zurück zum Zitat S. Ge, M. Isac, and R. Guthrie: ISIJ Int., 2013, vol. 53, pp. 729–42.CrossRef S. Ge, M. Isac, and R. Guthrie: ISIJ Int., 2013, vol. 53, pp. 729–42.CrossRef
4.
Zurück zum Zitat A. Maleki, A. Taherizadeh, and N. Hosseini: ISIJ Int., 2017, vol. 57, pp. 1–14.CrossRef A. Maleki, A. Taherizadeh, and N. Hosseini: ISIJ Int., 2017, vol. 57, pp. 1–14.CrossRef
5.
Zurück zum Zitat M. Ferry: Direct Strip Casting of Metals and Alloys, Woodhead Publishing, Cambridge, 2006.CrossRef M. Ferry: Direct Strip Casting of Metals and Alloys, Woodhead Publishing, Cambridge, 2006.CrossRef
7.
Zurück zum Zitat K.Y. Xie, S.L. Shrestha, P.J. Felfer, J.M. Cairney, C.R. Killmore, K.R. Carpenter, H.R. Kaul, and S.P. Ringer: Metall. Mater. Trans. A, 2012, vol. 44A, pp. 848–55. K.Y. Xie, S.L. Shrestha, P.J. Felfer, J.M. Cairney, C.R. Killmore, K.R. Carpenter, H.R. Kaul, and S.P. Ringer: Metall. Mater. Trans. A, 2012, vol. 44A, pp. 848–55.
8.
Zurück zum Zitat Z.Z. Wang, K.R. Carpenter, Z.X. Chen, and C.R. Killmore: Mater. Sci. Eng. A, 2017, vol. 700, pp. 234–40.CrossRef Z.Z. Wang, K.R. Carpenter, Z.X. Chen, and C.R. Killmore: Mater. Sci. Eng. A, 2017, vol. 700, pp. 234–40.CrossRef
9.
Zurück zum Zitat M. Takashima, M. Komatsubara, and N. Morito: ISIJ Int., 1997, vol. 37, pp. 1263–8.CrossRef M. Takashima, M. Komatsubara, and N. Morito: ISIJ Int., 1997, vol. 37, pp. 1263–8.CrossRef
10.
Zurück zum Zitat Z.S. Xia, Y.L. Kang, and Q.L. Wang: J. Magn. Magn. Mater., 2008, vol. 320, pp. 3229–33.CrossRef Z.S. Xia, Y.L. Kang, and Q.L. Wang: J. Magn. Magn. Mater., 2008, vol. 320, pp. 3229–33.CrossRef
11.
Zurück zum Zitat N. Takahashi, Y. Suga, and H. Kobayashi: J. Magn. Magn. Mater., 1996, vol. 160, pp. 98–101.CrossRef N. Takahashi, Y. Suga, and H. Kobayashi: J. Magn. Magn. Mater., 1996, vol. 160, pp. 98–101.CrossRef
12.
Zurück zum Zitat Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, and G.L. Chen: J. Alloys Compd., 2010, vol. 491, pp. 268–70.CrossRef Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, and G.L. Chen: J. Alloys Compd., 2010, vol. 491, pp. 268–70.CrossRef
13.
Zurück zum Zitat H.J. Xu, Y.B. Xu, Y.L. He, H.T. Jiao, S. Yue, and J.P. Li: J. Magn. Magn. Mater., 2020, vol. 494, p. 165755.CrossRef H.J. Xu, Y.B. Xu, Y.L. He, H.T. Jiao, S. Yue, and J.P. Li: J. Magn. Magn. Mater., 2020, vol. 494, p. 165755.CrossRef
14.
Zurück zum Zitat H.T. Liu, Z.Y. Liu, Y.Q. Qiu, Y. Sun, and G.D. Wang: J. Mater. Process. Technol., 2020, vol. 212, pp. 1941–5.CrossRef H.T. Liu, Z.Y. Liu, Y.Q. Qiu, Y. Sun, and G.D. Wang: J. Mater. Process. Technol., 2020, vol. 212, pp. 1941–5.CrossRef
15.
Zurück zum Zitat X. Lu, F. Fang, Y.X. Zhang, Y. Wang, G. Yuan, Y.B. Xu, G.M. Cao, R.D.K. Misra, and G.D. Wang: Mater. Charact., 2017, vol. 126, pp. 125–34.CrossRef X. Lu, F. Fang, Y.X. Zhang, Y. Wang, G. Yuan, Y.B. Xu, G.M. Cao, R.D.K. Misra, and G.D. Wang: Mater. Charact., 2017, vol. 126, pp. 125–34.CrossRef
16.
Zurück zum Zitat Y.B. Xu, H.T. Jiao, Y.X. Zhang, F. Fang, X. Lu, Y. Wang, G.M. Cao, C.G. Li, and R.D.K. Misra: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1465–74.CrossRef Y.B. Xu, H.T. Jiao, Y.X. Zhang, F. Fang, X. Lu, Y. Wang, G.M. Cao, C.G. Li, and R.D.K. Misra: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1465–74.CrossRef
17.
Zurück zum Zitat P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, and Y. Fang: JOM., 2020, vol. 72, pp. 1910–9.CrossRef P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, and Y. Fang: JOM., 2020, vol. 72, pp. 1910–9.CrossRef
18.
Zurück zum Zitat L. Strezov and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959–66.CrossRef L. Strezov and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959–66.CrossRef
19.
Zurück zum Zitat H. Todoroki and N. Phinichka: ISIJ Int., 2009, vol. 49, pp. 1347–55.CrossRef H. Todoroki and N. Phinichka: ISIJ Int., 2009, vol. 49, pp. 1347–55.CrossRef
20.
Zurück zum Zitat C. Lu, W.L. Wang, J. Zeng, C.Y. Zhu, and J. Chang: Metall. Mater. Trans. B., 2019, vol. 50, pp. 77–85.CrossRef C. Lu, W.L. Wang, J. Zeng, C.Y. Zhu, and J. Chang: Metall. Mater. Trans. B., 2019, vol. 50, pp. 77–85.CrossRef
21.
Zurück zum Zitat K. Mukunthan, P. Hodgson, L. Strezov, and N. Stanford: ISIJ Int., 2013, vol. 53, pp. 2152–9.CrossRef K. Mukunthan, P. Hodgson, L. Strezov, and N. Stanford: ISIJ Int., 2013, vol. 53, pp. 2152–9.CrossRef
22.
Zurück zum Zitat K. Mukunthan, P. Hodgson, P. Sellamuthu, L. Strezov, Y. Durandet, and N. Stanford: ISIJ Int., 2013, vol. 53, pp. 1803–11.CrossRef K. Mukunthan, P. Hodgson, P. Sellamuthu, L. Strezov, Y. Durandet, and N. Stanford: ISIJ Int., 2013, vol. 53, pp. 1803–11.CrossRef
23.
Zurück zum Zitat C.Y. Zhu, W.L. Wang, and C. Lu: J. Alloys Compd., 2019, vol. 770, pp. 631–9.CrossRef C.Y. Zhu, W.L. Wang, and C. Lu: J. Alloys Compd., 2019, vol. 770, pp. 631–9.CrossRef
24.
Zurück zum Zitat Y. Yu, A. Cramb, R. Heard, Y. Fang, and J. Cui: ISIJ Int., 2006, vol. 46, pp. 1427–31.CrossRef Y. Yu, A. Cramb, R. Heard, Y. Fang, and J. Cui: ISIJ Int., 2006, vol. 46, pp. 1427–31.CrossRef
25.
Zurück zum Zitat L. Strezov, J. Herbertson, and G.R. Belton: Metall. Mater. Trans. B 2000, vol. 31, pp. 1023–30.CrossRef L. Strezov, J. Herbertson, and G.R. Belton: Metall. Mater. Trans. B 2000, vol. 31, pp. 1023–30.CrossRef
26.
Zurück zum Zitat P.S. Lyu, W.L. Wang, X.K. Long, K.X. Zhang, E.Z. Gao, and R.S. Qin: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 78–88.CrossRef P.S. Lyu, W.L. Wang, X.K. Long, K.X. Zhang, E.Z. Gao, and R.S. Qin: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 78–88.CrossRef
27.
Zurück zum Zitat P. Nolli and A.W. Cramb: Iron Steel Technol., 2006, vol. 3, pp. 169–78. P. Nolli and A.W. Cramb: Iron Steel Technol., 2006, vol. 3, pp. 169–78.
28.
29.
Zurück zum Zitat P. Nolli and A.W. Cramb: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 56–65.CrossRef P. Nolli and A.W. Cramb: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 56–65.CrossRef
30.
Zurück zum Zitat P. Misra, N. Phinichka, and A. Cramb: Iron Steelmak., 2003, vol. 30, pp. 46–55. P. Misra, N. Phinichka, and A. Cramb: Iron Steelmak., 2003, vol. 30, pp. 46–55.
31.
Zurück zum Zitat M. Ha, J. Choi, S. Jeong, H. Moon, T. Kang, and S. Lee: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 1487–97.CrossRef M. Ha, J. Choi, S. Jeong, H. Moon, T. Kang, and S. Lee: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 1487–97.CrossRef
32.
Zurück zum Zitat P. Nolli, A. Cramb, and D. Choo: Iron Steel Technol., 2004, vol. 1, pp. 117–23. P. Nolli, A. Cramb, and D. Choo: Iron Steel Technol., 2004, vol. 1, pp. 117–23.
33.
Zurück zum Zitat W.L. Wang, C.Y. Zhu, C. Lu, J. Yu, and L.J. Zhou: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5524–34.CrossRef W.L. Wang, C.Y. Zhu, C. Lu, J. Yu, and L.J. Zhou: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5524–34.CrossRef
34.
Zurück zum Zitat J.V. Beck and K.A. Woodbury: Meas. Sci. Technol., 1998, vol. 9, pp. 839–47.CrossRef J.V. Beck and K.A. Woodbury: Meas. Sci. Technol., 1998, vol. 9, pp. 839–47.CrossRef
35.
Zurück zum Zitat J.V. Beck, B. Litkouhi, and C.S. St. Clair: Numer. Heat Transfer A, 1982, vol. 5, pp. 275–86. J.V. Beck, B. Litkouhi, and C.S. St. Clair: Numer. Heat Transfer A, 1982, vol. 5, pp. 275–86.
36.
Zurück zum Zitat H.H. Zhang, W.L. Wang, D. Zhou, F.J. Ma, B.X. Lu, and L.J. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1038–47.CrossRef H.H. Zhang, W.L. Wang, D. Zhou, F.J. Ma, B.X. Lu, and L.J. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1038–47.CrossRef
37.
Zurück zum Zitat D. Zhou, W.L. Wang, H.H. Zhang, F.J. Ma, K. Chen, and L.J. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1048–56.CrossRef D. Zhou, W.L. Wang, H.H. Zhang, F.J. Ma, K. Chen, and L.J. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1048–56.CrossRef
Metadaten
Titel
Formation of Deposited Oxide Film during the Sub-rapid Solidification of Silicon Steel Droplet and Its Effect on Interfacial Heat Transfer Behavior
verfasst von
Wanlin Wang
Dawei Cai
Cheng Lu
Peisheng Lyu
Chenyang Zhu
Jie Zeng
Publikationsdatum
17.11.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2022
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-021-02356-7

Weitere Artikel der Ausgabe 1/2022

Metallurgical and Materials Transactions B 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.