Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2014

01.07.2014

Tailored One-Way and Two-Way Shape Memory Capabilities of Poly(ε-Caprolactone)-Based Systems for Biomedical Applications

verfasst von: Stefano Pandini, Theonis Riccò, Alberto Borboni, Ileana Bodini, David Vetturi, Danilo Cambiaghi, Maurizio Toselli, Katia Paderni, Massimo Messori, Francesco Pilati, Federica Chiellini, Cristina Bartoli

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the shape memory capabilities of semicrystalline networks, focusing the attention on poly(ε-caprolactone) (PCL) systems, a class of materials that allows to satisfy important requirements for their applications as biomedical devices, such as the good biocompatibility, the fast recovery of large “temporary” shape configurations, and the easy tailoring of the transformation temperatures. The materials were prepared with various crosslink densities and crosslinking methodologies; in particular, beside a thermal crosslinking based on reactive methacrylic end groups, a novel type of covalently crosslinked semicrystalline systems was prepared by a sol-gel approach from alkoxysilane-terminated PCL precursors, so as to avoid potentially toxic additives typically used for free-radical thermal curing. The materials were subjected to biological tests, to study their ability in sustaining cell adhesion and proliferation, and to thermal characterizations, to evaluate the possibility to tailor their melting and crystallization temperatures. The one-way shape memory (i.e., the possibility to set the material in a given configuration and to recover its pristine shape) and the two-way shape memory response (i.e., the triggered change between two distinguished shapes on the application of an on-off stimulus) were studied by applying optimized thermo-mechanical cyclic histories. The ability to fix the applied shape and to recover the original one on the application of heating (i.e., the one-way effect) was evaluated on tensile bars; further, to investigate a potential application as self-expandable stents, isothermal shape memory experiments were carried out also on tubular specimens, previously folded in a temporary compact configuration. The two-way response was studied through the application of a constant load and of a heating/cooling cycle from above melting to below the crystallization temperature, leading to a reversible elongation/contraction effect, involving maximum strain changes up to about 80%, whose extent may be controlled through the crosslink density.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Lendlein and S. Kelch, Shape-Memory Polymers, Angew. Chem. Int. Ed., 2002, 41(12), p 2034–2057CrossRef A. Lendlein and S. Kelch, Shape-Memory Polymers, Angew. Chem. Int. Ed., 2002, 41(12), p 2034–2057CrossRef
2.
Zurück zum Zitat A. Lendlein and R. Langer, Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications, Science, 2002, 296(5573), p 1673–1676CrossRef A. Lendlein and R. Langer, Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications, Science, 2002, 296(5573), p 1673–1676CrossRef
3.
Zurück zum Zitat C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, and K. Gall, Strong, Tailored, Biocompatible Shape-Memory Polymer Networks, Adv. Funct. Mater., 2008, 18, p 2428–2435CrossRef C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, and K. Gall, Strong, Tailored, Biocompatible Shape-Memory Polymer Networks, Adv. Funct. Mater., 2008, 18, p 2428–2435CrossRef
4.
Zurück zum Zitat J. Leng, X. Lan, Y. Liu, and S. Du, Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications, Prog. Mater. Sci., 2011, 56(7), p 1077–1135CrossRef J. Leng, X. Lan, Y. Liu, and S. Du, Shape-Memory Polymers and Their Composites: Stimulus Methods and Applications, Prog. Mater. Sci., 2011, 56(7), p 1077–1135CrossRef
5.
Zurück zum Zitat A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Shape-Memory Polymers as a Technology Platform for Biomedical Applications, Expert Rev. Med. Dev., 2010, 7(3), p 357–379CrossRef A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Shape-Memory Polymers as a Technology Platform for Biomedical Applications, Expert Rev. Med. Dev., 2010, 7(3), p 357–379CrossRef
6.
Zurück zum Zitat L. Xue, S. Dai, and Z. Li, Biodegradable Shape-Memory Block Co-polymers for Fast Self-Expandable Stents, Biomaterials, 2010, 31, p 8132–8140CrossRef L. Xue, S. Dai, and Z. Li, Biodegradable Shape-Memory Block Co-polymers for Fast Self-Expandable Stents, Biomaterials, 2010, 31, p 8132–8140CrossRef
7.
Zurück zum Zitat G.M. Baer, T.S. Wilson, W. Small, IV, J. Hartman, W.J. Benett, D.L. Matthews, and D.J. Maitland, Thermomechanical Properties, Collapse Pressure, and Expansion of Shape Memory Polymer Neurovascular Stent Prototypes, J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(1), p 421–429 G.M. Baer, T.S. Wilson, W. Small, IV, J. Hartman, W.J. Benett, D.L. Matthews, and D.J. Maitland, Thermomechanical Properties, Collapse Pressure, and Expansion of Shape Memory Polymer Neurovascular Stent Prototypes, J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(1), p 421–429
8.
Zurück zum Zitat G.M. Baer, W. Small, T.S. Wilson, W.J. Benett, D.L. Matthews, J. Hartman, and D.J. Maitland, Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent, BioMed. Eng. Online, 2007, 6, p 43CrossRef G.M. Baer, W. Small, T.S. Wilson, W.J. Benett, D.L. Matthews, J. Hartman, and D.J. Maitland, Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent, BioMed. Eng. Online, 2007, 6, p 43CrossRef
9.
Zurück zum Zitat M.A. Woodruff and D.W. Hutmacher, The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century, Prog. Polym. Sci., 2010, 35, p 1217–1256CrossRef M.A. Woodruff and D.W. Hutmacher, The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century, Prog. Polym. Sci., 2010, 35, p 1217–1256CrossRef
10.
Zurück zum Zitat F. Sanda, H. Sanada, Y. Shibasaki, and T. Endo, Star Polymer Synthesis from ε-Caprolactone Utilizing Polyol/Protonic Acid Initiator, Macromolecules, 2002, 35(3), p 680–683CrossRef F. Sanda, H. Sanada, Y. Shibasaki, and T. Endo, Star Polymer Synthesis from ε-Caprolactone Utilizing Polyol/Protonic Acid Initiator, Macromolecules, 2002, 35(3), p 680–683CrossRef
11.
Zurück zum Zitat K. Paderni, S. Pandini, S. Passera, F. Pilati, M. Toselli, and M. Messori, Shape-Memory Polymer Networks from Sol-Gel Cross-Linked Alkoxysilane-Terminated Poly(Epsilon-Caprolactone), J. Mater. Sci., 2012, 47(10), p 4354–4362CrossRef K. Paderni, S. Pandini, S. Passera, F. Pilati, M. Toselli, and M. Messori, Shape-Memory Polymer Networks from Sol-Gel Cross-Linked Alkoxysilane-Terminated Poly(Epsilon-Caprolactone), J. Mater. Sci., 2012, 47(10), p 4354–4362CrossRef
12.
Zurück zum Zitat M. Messori, M. Degli Esposti, K. Paderni, S. Pandini, S. Passera, T. Riccò, and M. Toselli, Chemical and Thermomechanical Tailoring of the Shape Memory Effect in Poly(ε-Caprolactone)-Based Systems, J. Mater. Sci., 2013, 48(1), p 424–440CrossRef M. Messori, M. Degli Esposti, K. Paderni, S. Pandini, S. Passera, T. Riccò, and M. Toselli, Chemical and Thermomechanical Tailoring of the Shape Memory Effect in Poly(ε-Caprolactone)-Based Systems, J. Mater. Sci., 2013, 48(1), p 424–440CrossRef
13.
Zurück zum Zitat H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Initial and 6-Month Results of Biodegradable Poly l-Lactic Acid Coronary Stents in Humans, Circulation, 2000, 102(4), p 399–404CrossRef H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Initial and 6-Month Results of Biodegradable Poly l-Lactic Acid Coronary Stents in Humans, Circulation, 2000, 102(4), p 399–404CrossRef
14.
Zurück zum Zitat C.M. Yakacki, R. Shandasa, C. Lanning, B. Rech, A. Eckstein, and K. Gall, Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Application, Biomaterials, 2007, 28, p 2255–2263CrossRef C.M. Yakacki, R. Shandasa, C. Lanning, B. Rech, A. Eckstein, and K. Gall, Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Application, Biomaterials, 2007, 28, p 2255–2263CrossRef
15.
Zurück zum Zitat T. Chung, A. Romo-Uribe, and P.T. Mather, Two-Way Reversible Shape Memory in a Semicrystalline Network, Macromolecules, 2008, 41, p 184–192CrossRef T. Chung, A. Romo-Uribe, and P.T. Mather, Two-Way Reversible Shape Memory in a Semicrystalline Network, Macromolecules, 2008, 41, p 184–192CrossRef
16.
Zurück zum Zitat J. Zotzmann, M. Behl, D. Hofmann, and A. Lendlein, Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-Caprolactone)-Segments, Adv. Mater., 2010, 22, p 3424–3429CrossRef J. Zotzmann, M. Behl, D. Hofmann, and A. Lendlein, Reversible Triple-Shape Effect of Polymer Networks Containing Polypentadecalactone- and Poly(ε-Caprolactone)-Segments, Adv. Mater., 2010, 22, p 3424–3429CrossRef
17.
Zurück zum Zitat S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, and T. Riccò, One-Way and Two-Way Shape Memory Behaviour of Semi-Crystalline Networks Based on Sol-Gel Cross-Linked Poly(ε-Caprolactone), Polymer, 2013, 54(16), p 4253–4265CrossRef S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, and T. Riccò, One-Way and Two-Way Shape Memory Behaviour of Semi-Crystalline Networks Based on Sol-Gel Cross-Linked Poly(ε-Caprolactone), Polymer, 2013, 54(16), p 4253–4265CrossRef
18.
Zurück zum Zitat A. Lendlein, A.M. Schmidt, M. Schroeter, and R. Langer, Shape-Memory Polymer Networks from Oligo(ε-Caprolactone) Dimethacrylates, J. Polym. Sci. Polym. Chem., 2005, 43(7), p 1369–1381CrossRef A. Lendlein, A.M. Schmidt, M. Schroeter, and R. Langer, Shape-Memory Polymer Networks from Oligo(ε-Caprolactone) Dimethacrylates, J. Polym. Sci. Polym. Chem., 2005, 43(7), p 1369–1381CrossRef
19.
Zurück zum Zitat K.K. Westbrook, V. Parakh, T. Chung, P.T. Mather, L.C. Wan, M.L. Dunn, and H.J. Qi, Constitutive Modeling of Shape Memory Effects in Semicrystalline Polymers with Stretch Induced Crystallization, J. Eng. Mater. Technol., 2010, 132, p 041001–041010CrossRef K.K. Westbrook, V. Parakh, T. Chung, P.T. Mather, L.C. Wan, M.L. Dunn, and H.J. Qi, Constitutive Modeling of Shape Memory Effects in Semicrystalline Polymers with Stretch Induced Crystallization, J. Eng. Mater. Technol., 2010, 132, p 041001–041010CrossRef
20.
Zurück zum Zitat G. Barot and I.J. Rao, Constitutive Modeling of the Mechanics Associated with Crystallizable Shape Memory Polymers, Z. Angew. Math. Phys., 2006, 57, p 652–681CrossRef G. Barot and I.J. Rao, Constitutive Modeling of the Mechanics Associated with Crystallizable Shape Memory Polymers, Z. Angew. Math. Phys., 2006, 57, p 652–681CrossRef
Metadaten
Titel
Tailored One-Way and Two-Way Shape Memory Capabilities of Poly(ε-Caprolactone)-Based Systems for Biomedical Applications
verfasst von
Stefano Pandini
Theonis Riccò
Alberto Borboni
Ileana Bodini
David Vetturi
Danilo Cambiaghi
Maurizio Toselli
Katia Paderni
Massimo Messori
Francesco Pilati
Federica Chiellini
Cristina Bartoli
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1033-5

Weitere Artikel der Ausgabe 7/2014

Journal of Materials Engineering and Performance 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.