Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2015

01.02.2015

A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

verfasst von: Cong Wang, De-Guang Shang, Xiao-Wei Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.F. Socie and G.B. Marquis, Multiaxial Fatigue, Society of Automotive Engineers Inc., Warrendale, 2000CrossRef D.F. Socie and G.B. Marquis, Multiaxial Fatigue, Society of Automotive Engineers Inc., Warrendale, 2000CrossRef
2.
Zurück zum Zitat Q.H. Vu, D. Halm, and Y. Nadot, Multiaxial Fatigue Criterion for Complex Loading Based on Stress Invariants, Int. J. Fatigue, 2010, 32(7), p 1004–1014CrossRef Q.H. Vu, D. Halm, and Y. Nadot, Multiaxial Fatigue Criterion for Complex Loading Based on Stress Invariants, Int. J. Fatigue, 2010, 32(7), p 1004–1014CrossRef
3.
Zurück zum Zitat M. Shariyat, Three Energy-Based Multiaxial HCF Criteria for Fatigue Life Determination in Components Under Random Non-proportional Stress Fields, Fatigue Fract. Eng. Mater. Struct., 2009, 32(10), p 785–808CrossRef M. Shariyat, Three Energy-Based Multiaxial HCF Criteria for Fatigue Life Determination in Components Under Random Non-proportional Stress Fields, Fatigue Fract. Eng. Mater. Struct., 2009, 32(10), p 785–808CrossRef
4.
Zurück zum Zitat B. Li, L. Reis, and M. de Freitas, Comparative Study of Multiaxial Fatigue Damage Models for Ductile Structural Steels and Brittle Materials, Int. J. Fatigue, 2009, 31(11–12), p 1895–1906CrossRef B. Li, L. Reis, and M. de Freitas, Comparative Study of Multiaxial Fatigue Damage Models for Ductile Structural Steels and Brittle Materials, Int. J. Fatigue, 2009, 31(11–12), p 1895–1906CrossRef
5.
Zurück zum Zitat S. Capetta, R. Tovo, D. Taylor, and P. Livieri, Numerical Evaluation of Fatigue Strength on Mechanical Notched Components Under Multiaxial Loading, Int. J. Fatigue, 2011, 33(5), p 661–671CrossRef S. Capetta, R. Tovo, D. Taylor, and P. Livieri, Numerical Evaluation of Fatigue Strength on Mechanical Notched Components Under Multiaxial Loading, Int. J. Fatigue, 2011, 33(5), p 661–671CrossRef
6.
Zurück zum Zitat A. Cristofori, L. Susmel, and R. Tovo, A Stress Invariant Based Criterion to Estimate Fatigue Damage Under Multiaxial Loading, Int. J. Fatigue, 2008, 30(9), p 1646–1658CrossRef A. Cristofori, L. Susmel, and R. Tovo, A Stress Invariant Based Criterion to Estimate Fatigue Damage Under Multiaxial Loading, Int. J. Fatigue, 2008, 30(9), p 1646–1658CrossRef
7.
Zurück zum Zitat Y.Y. Wang and W.X. Yao, Evaluation and Comparison of Several Multiaxial Fatigue, Int. J. Fatigue, 2004, 26(1), p 17–25CrossRef Y.Y. Wang and W.X. Yao, Evaluation and Comparison of Several Multiaxial Fatigue, Int. J. Fatigue, 2004, 26(1), p 17–25CrossRef
8.
Zurück zum Zitat Y.M. Liu and S. Mahadevan, Multiaxial High-Cycle Fatigue Criterion and Life Prediction for Metals, Int. J. Fatigue, 2005, 27(7), p 790–800CrossRef Y.M. Liu and S. Mahadevan, Multiaxial High-Cycle Fatigue Criterion and Life Prediction for Metals, Int. J. Fatigue, 2005, 27(7), p 790–800CrossRef
9.
Zurück zum Zitat H.J. Gough and H.V. Pollard, The Strength of Metals Under Combined Alternating Stress, Proc. Inst. Mech. Eng., 1935, 131, p 3–18CrossRef H.J. Gough and H.V. Pollard, The Strength of Metals Under Combined Alternating Stress, Proc. Inst. Mech. Eng., 1935, 131, p 3–18CrossRef
10.
Zurück zum Zitat S.B. Lee, Out-of-Phase Bending and Torsion Fatigue of Steels, Biaxial and Multiaxial Fatigue, M.W. Brown, K.J. Miller, Ed., 1989 (London), EGF3, p 621–634 S.B. Lee, Out-of-Phase Bending and Torsion Fatigue of Steels, Biaxial and Multiaxial Fatigue, M.W. Brown, K.J. Miller, Ed., 1989 (London), EGF3, p 621–634
11.
Zurück zum Zitat G. Sines and G. Ohgi, Fatigue Criteria Under Combined Stresses or Strains, J. Eng. Mater. Tech. Trans., 1981, 103, p 82–90CrossRef G. Sines and G. Ohgi, Fatigue Criteria Under Combined Stresses or Strains, J. Eng. Mater. Tech. Trans., 1981, 103, p 82–90CrossRef
12.
Zurück zum Zitat B. Crossland, Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel, Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, 1956 (London), p 138–149 B. Crossland, Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel, Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, 1956 (London), p 138–149
13.
Zurück zum Zitat J. Liu, Weakest Link Theory and Multiaxial Criteria. In: Proceeding of the 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow, 1997, p. 45–62. J. Liu, Weakest Link Theory and Multiaxial Criteria. In: Proceeding of the 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow, 1997, p. 45–62.
14.
Zurück zum Zitat H. Zenner, A. Simbürger, and J.P. Liu, On the Fatigue Limit of Ductile Metals Under Complex Multiaxial Loading, Int. J. Fatigue, 2000, 22, p 137–145CrossRef H. Zenner, A. Simbürger, and J.P. Liu, On the Fatigue Limit of Ductile Metals Under Complex Multiaxial Loading, Int. J. Fatigue, 2000, 22, p 137–145CrossRef
15.
Zurück zum Zitat K. Dang Van, G. Cailletaud, Criterion for High-Cycle Fatigue Failure Under Multiaxial Loading, Biaxial and Multiaxial Fatigue, M.W. Brown, K.J. Miller, Ed., 1989 (London), p 459–478 K. Dang Van, G. Cailletaud, Criterion for High-Cycle Fatigue Failure Under Multiaxial Loading, Biaxial and Multiaxial Fatigue, M.W. Brown, K.J. Miller, Ed., 1989 (London), p 459–478
16.
Zurück zum Zitat I.V. Papadopoulos, P. Dvoli, C. Gorla, M. Filippini, and A. Bernasconi, A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals, Int. J. Fatigue, 1997, 19(3), p 219–235CrossRef I.V. Papadopoulos, P. Dvoli, C. Gorla, M. Filippini, and A. Bernasconi, A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals, Int. J. Fatigue, 1997, 19(3), p 219–235CrossRef
17.
Zurück zum Zitat W.N. Findley, A Theory for the Effect of Mean Stress on the Fatigue of Metals Under Combined Torsion and Axial Load or Bending, J. Eng. Ind. Trans. ASME, 1959, 81, p 301–306 W.N. Findley, A Theory for the Effect of Mean Stress on the Fatigue of Metals Under Combined Torsion and Axial Load or Bending, J. Eng. Ind. Trans. ASME, 1959, 81, p 301–306
18.
Zurück zum Zitat T. Matake, An Explanation on Fatigue Limit Under Combined Stress, Bull. JSME, 1977, 20, p 257–263CrossRef T. Matake, An Explanation on Fatigue Limit Under Combined Stress, Bull. JSME, 1977, 20, p 257–263CrossRef
19.
Zurück zum Zitat D.L. McDiarmid, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1991, 14(4), p 429–453CrossRef D.L. McDiarmid, A General Criterion for High Cycle Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1991, 14(4), p 429–453CrossRef
20.
Zurück zum Zitat M.W. Brown, K.J. Miller, Two Decades of Progress in the Assessments of Multiaxial Low-Cycle Fatigue Life, Low-Cycle Fatigue and Life Prediction, ASTM, 1982, p 482–499 M.W. Brown, K.J. Miller, Two Decades of Progress in the Assessments of Multiaxial Low-Cycle Fatigue Life, Low-Cycle Fatigue and Life Prediction, ASTM, 1982, p 482–499
21.
Zurück zum Zitat C.C. Zhang and W.X. Yao, An Improved Multiaxial High-Cycle Fatigue Criterion Based on Critical Plane Approach, Fatigue Fract. Eng. Mater. Struct., 2011, 34(5), p 337–344CrossRef C.C. Zhang and W.X. Yao, An Improved Multiaxial High-Cycle Fatigue Criterion Based on Critical Plane Approach, Fatigue Fract. Eng. Mater. Struct., 2011, 34(5), p 337–344CrossRef
22.
Zurück zum Zitat A. Carpinteri, E. Macha, R. Brighenti, and A. Spagnoli, Expected Fracture Plane for Multiaxial Random Stress State. Part I: Theoretical Aspects of the Weight Function Method, Int. J. Fatigue, 1999, 21(1), p 83–88CrossRef A. Carpinteri, E. Macha, R. Brighenti, and A. Spagnoli, Expected Fracture Plane for Multiaxial Random Stress State. Part I: Theoretical Aspects of the Weight Function Method, Int. J. Fatigue, 1999, 21(1), p 83–88CrossRef
23.
Zurück zum Zitat A. Carpinteri, E. Macha, R. Brighenti, and A. Spagnoli, Expected Fracture Plane for Multiaxial Random Stress State. Part II: Numerical Simulation and Experimental Assessment Through the Weight Function Method, Int. J. Fatigue, 1999, 21(1), p 83–88CrossRef A. Carpinteri, E. Macha, R. Brighenti, and A. Spagnoli, Expected Fracture Plane for Multiaxial Random Stress State. Part II: Numerical Simulation and Experimental Assessment Through the Weight Function Method, Int. J. Fatigue, 1999, 21(1), p 83–88CrossRef
24.
Zurück zum Zitat A. Carpinteri, A. Spagnoli, and S. Vantadori, Multiaxial Fatigue Assessment Using a Simplified Critical Plane-Based Criterion, Int. J. Fatigue, 2011, 33(8), p 969–976CrossRef A. Carpinteri, A. Spagnoli, and S. Vantadori, Multiaxial Fatigue Assessment Using a Simplified Critical Plane-Based Criterion, Int. J. Fatigue, 2011, 33(8), p 969–976CrossRef
25.
Zurück zum Zitat L. Susmel and R. Tovo, Estimating Fatigue Damage Under Variable Amplitude Multiaxial Fatigue Loading, Fatigue Fract. Eng. Master. Struct., 2011, 34(12), p 1053–1077CrossRef L. Susmel and R. Tovo, Estimating Fatigue Damage Under Variable Amplitude Multiaxial Fatigue Loading, Fatigue Fract. Eng. Master. Struct., 2011, 34(12), p 1053–1077CrossRef
26.
Zurück zum Zitat T Nishihara, M Kawamoto, The Strength of Metals Under Combined Alternating Bending and Torsion with Phase Difference. Mem College Engng, Kyoto Imperial Uni 1945; 11:85–112. T Nishihara, M Kawamoto, The Strength of Metals Under Combined Alternating Bending and Torsion with Phase Difference. Mem College Engng, Kyoto Imperial Uni 1945; 11:85–112.
27.
Zurück zum Zitat G. Marquis and D. Socie, Long-Life Torsion Fatigue with Normal Mean Stresses, Fatigue Fract. Eng. Mater. Struct., 2000, 23(4), p 293–300CrossRef G. Marquis and D. Socie, Long-Life Torsion Fatigue with Normal Mean Stresses, Fatigue Fract. Eng. Mater. Struct., 2000, 23(4), p 293–300CrossRef
28.
Zurück zum Zitat A. Carpinteri and A. Spagnoli, Multiaxial High-Cycle Fatigue Criterion for Hard Metals, Int. J. Fatigue, 2001, 23(2), p 135–145CrossRef A. Carpinteri and A. Spagnoli, Multiaxial High-Cycle Fatigue Criterion for Hard Metals, Int. J. Fatigue, 2001, 23(2), p 135–145CrossRef
29.
Zurück zum Zitat C.C. Zhang and W.X. Yao, A New Model for Life Prediction of Multiaxial High-Cycle Fatigue, Chin. Theor. Appl. Mech., 2010, 42(6), p 1225–1330 (in Chinese) C.C. Zhang and W.X. Yao, A New Model for Life Prediction of Multiaxial High-Cycle Fatigue, Chin. Theor. Appl. Mech., 2010, 42(6), p 1225–1330 (in Chinese)
Metadaten
Titel
A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials
verfasst von
Cong Wang
De-Guang Shang
Xiao-Wei Wang
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1335-7

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Engineering and Performance 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.