Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2015

01.05.2015

Modeling the Effects of Processing Parameters on Dynamic Recrystallization Behavior of Deformed 38MnVS6 Steel

verfasst von: Sendong Gu, Liwen Zhang, Chi Zhang, Jinhua Ruan, Yu Zhen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic recrystallization (DRX) and grain growth mathematical models of 38MnVS6 steel were obtained on the basis of the results from hot compression tests and isothermal annealing tests on a Gleeble-1500 thermo-mechanical simulator. A three-dimensional finite element model was established to investigate the compression process. In order to predict the evolution of DRX volume fraction and austenite grain sizes, a subprogram was designed and coupled in the FE model. The effects of deformation temperatures and strain rates on microstructural evolution and distribution of 38MnVS6 steel during hot compression process were simulated. The simulated results show that the distributions of DRX volume fraction are inhomogeneous in the deformed workpiece, and the degree of DRX increases with increasing deformation temperature and decreasing strain rate. The average rate of DRX increases with the increase of deformation temperature and strain rate. Additionally, with the decrease of deformation temperature and the increase of strain rate, the inhomogeneity of DRX grain sizes increases and the average complete DRX grain sizes become finer. The simulated values of average complete DRX grain sizes show a good agreement with the measured ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205(1-3), p 308–315 [in English]CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205(1-3), p 308–315 [in English]CrossRef
2.
Zurück zum Zitat N.T. Switzner, C.J. Van Tyne, and M.C. Mataya, Effect of Forging Strain Rate and Deformation Temperature on the Mechanical Properties of Warm-Worked 304L Stainless Steel, J. Mater. Process. Technol., 2010, 210(8), p 998–1007 [in English]CrossRef N.T. Switzner, C.J. Van Tyne, and M.C. Mataya, Effect of Forging Strain Rate and Deformation Temperature on the Mechanical Properties of Warm-Worked 304L Stainless Steel, J. Mater. Process. Technol., 2010, 210(8), p 998–1007 [in English]CrossRef
3.
Zurück zum Zitat Y.C. Zhu, W.D. Zeng, J.L. Liu, Y.Q. Zhao, Y.G. Zhou, and H.Q. Yu, Effect of Processing Parameters on the Hot Deformation Behavior of As-Cast TC21 Titanium Alloy, Mater. Des., 2012, 33, p 264–272 [in English]CrossRef Y.C. Zhu, W.D. Zeng, J.L. Liu, Y.Q. Zhao, Y.G. Zhou, and H.Q. Yu, Effect of Processing Parameters on the Hot Deformation Behavior of As-Cast TC21 Titanium Alloy, Mater. Des., 2012, 33, p 264–272 [in English]CrossRef
4.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, Comput. Mater. Sci., 2008, 43(4), p 1117–1122 [in English]CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, Comput. Mater. Sci., 2008, 43(4), p 1117–1122 [in English]CrossRef
5.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30(3), p 908–913 [in English]CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30(3), p 908–913 [in English]CrossRef
6.
Zurück zum Zitat L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Microstructure Evolution Modeling of FGH96 Superalloy During Inertia Friction Welding Process, Finite Elem. Anal. Des., 2014, 80, p 63–68 [in English]CrossRef L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Microstructure Evolution Modeling of FGH96 Superalloy During Inertia Friction Welding Process, Finite Elem. Anal. Des., 2014, 80, p 63–68 [in English]CrossRef
7.
Zurück zum Zitat Q.Q. He, J. Sun, C.X. Yan, J.Y. Zhao, and Z.B. Zhang, Thermo-Mechanical Modeling and Simulation of Microstructure Evolution in Multi-pass H-Shape Rolling, Finite Elem. Anal. Des., 2013, 76, p 13–20 [in English]CrossRef Q.Q. He, J. Sun, C.X. Yan, J.Y. Zhao, and Z.B. Zhang, Thermo-Mechanical Modeling and Simulation of Microstructure Evolution in Multi-pass H-Shape Rolling, Finite Elem. Anal. Des., 2013, 76, p 13–20 [in English]CrossRef
8.
Zurück zum Zitat Y. Luo, J.M. Peng, H.B. Wang, and X.C. Wu, Effect of Tempering on Microstructure and Mechanical Properties of a Non-quenched Bainitic Steel, Mater. Sci. Eng. A, 2010, 527(15), p 3427–3433 [in English]CrossRef Y. Luo, J.M. Peng, H.B. Wang, and X.C. Wu, Effect of Tempering on Microstructure and Mechanical Properties of a Non-quenched Bainitic Steel, Mater. Sci. Eng. A, 2010, 527(15), p 3427–3433 [in English]CrossRef
9.
Zurück zum Zitat J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Dynamic Recrystallization Behavior of Microalloyed Forged Steel, J. Iron Steel Res. Int., 2008, 15(3), p 78–81 [in English]CrossRef J. Wang, J. Chen, Z. Zhao, and X.Y. Ruan, Dynamic Recrystallization Behavior of Microalloyed Forged Steel, J. Iron Steel Res. Int., 2008, 15(3), p 78–81 [in English]CrossRef
10.
Zurück zum Zitat P. Liu, R.P. Liu, Y.S. Wei, H.X. Yang, Q.L. Yong, and Y.Z. Bao, Austenite Dynamic Recrystallization of the Microalloyed Forging Steels 38MnVS During Forging Process, Proc. Eng., 2012, 27, p 63–71 [in English]CrossRef P. Liu, R.P. Liu, Y.S. Wei, H.X. Yang, Q.L. Yong, and Y.Z. Bao, Austenite Dynamic Recrystallization of the Microalloyed Forging Steels 38MnVS During Forging Process, Proc. Eng., 2012, 27, p 63–71 [in English]CrossRef
11.
Zurück zum Zitat C.X. Yue, L.W. Zhang, J.H. Ruan, and H.J. Gao, Modelling of Recrystallization Behavior and Austenite Grain Size Evolution During the Hot Rolling of GCr15 Rod, Appl. Math. Model., 2010, 34(9), p 2644–2653 [in English]CrossRef C.X. Yue, L.W. Zhang, J.H. Ruan, and H.J. Gao, Modelling of Recrystallization Behavior and Austenite Grain Size Evolution During the Hot Rolling of GCr15 Rod, Appl. Math. Model., 2010, 34(9), p 2644–2653 [in English]CrossRef
12.
Zurück zum Zitat S.L. Liao, L.W. Zhang, C.X. Yue, and J.B. Pei, Experimental Research and Numerical Simulation of Dynamic Microstructure Evolution of GCr15 Steel, J. Plast. Eng., 2008, 15(4), p 159–162 [in Chinese] S.L. Liao, L.W. Zhang, C.X. Yue, and J.B. Pei, Experimental Research and Numerical Simulation of Dynamic Microstructure Evolution of GCr15 Steel, J. Plast. Eng., 2008, 15(4), p 159–162 [in Chinese]
13.
Zurück zum Zitat Y.S. Jiang, D.C. Ko, and B.M. Kim, Application of the Finite Element Method to Predict Microstructure Evolution in the Hot Forging of Steel, J. Mater. Process. Technol., 2000, 101(1-3), p 85–94 [in English]CrossRef Y.S. Jiang, D.C. Ko, and B.M. Kim, Application of the Finite Element Method to Predict Microstructure Evolution in the Hot Forging of Steel, J. Mater. Process. Technol., 2000, 101(1-3), p 85–94 [in English]CrossRef
14.
Zurück zum Zitat S.D. Gu, L.W. Zhang, C.X. Yue, J.H. Ruan, J.L. Zhang, and H.J. Gao, Multi-field Coupled Numerical Simulation of Microstructure Evolution During the Hot Rolling Process of GCr15 Steel Rod, Comput. Mater. Sci., 2011, 50(7), p 1951–1957 [in English]CrossRef S.D. Gu, L.W. Zhang, C.X. Yue, J.H. Ruan, J.L. Zhang, and H.J. Gao, Multi-field Coupled Numerical Simulation of Microstructure Evolution During the Hot Rolling Process of GCr15 Steel Rod, Comput. Mater. Sci., 2011, 50(7), p 1951–1957 [in English]CrossRef
15.
Zurück zum Zitat S.D. Gu, L.W. Zhang, J.H. Ruan, P.Z. Zhou, and Y. Zhen, Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-quenched Steel, J. Mater. Eng. Perform., 2014, 23(3), p 1062–1068 [in English]CrossRef S.D. Gu, L.W. Zhang, J.H. Ruan, P.Z. Zhou, and Y. Zhen, Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-quenched Steel, J. Mater. Eng. Perform., 2014, 23(3), p 1062–1068 [in English]CrossRef
16.
Zurück zum Zitat L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Solution and Aging FGH96 Superalloy, J. Mater. Eng. Perform., 2013, 22(12), p 3728–3734 [in English]CrossRef L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Solution and Aging FGH96 Superalloy, J. Mater. Eng. Perform., 2013, 22(12), p 3728–3734 [in English]CrossRef
17.
Zurück zum Zitat S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31(5), p 2319–2323 [in English]CrossRef S. Anbuselvan and S. Ramanathan, Hot Deformation and Processing Maps of Extruded ZE41A Magnesium Alloy, Mater. Des., 2010, 31(5), p 2319–2323 [in English]CrossRef
18.
Zurück zum Zitat C.M. Sellars and W.J. Mctegart, On Mechanism of Hot Deformation, Acta Matall., 1966, 14(9), p 1136–1138 [in English)CrossRef C.M. Sellars and W.J. Mctegart, On Mechanism of Hot Deformation, Acta Matall., 1966, 14(9), p 1136–1138 [in English)CrossRef
19.
Zurück zum Zitat B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18(8), p 1029–1034 [in English]CrossRef B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18(8), p 1029–1034 [in English]CrossRef
20.
Zurück zum Zitat P.D. Hodgson, Microstructure Modelling for Property Prediction and Control, J. Mater. Process. Technol., 1996, 60(1-4, 15), p 27–33 [in English]CrossRef P.D. Hodgson, Microstructure Modelling for Property Prediction and Control, J. Mater. Process. Technol., 1996, 60(1-4, 15), p 27–33 [in English]CrossRef
21.
Zurück zum Zitat A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modeling of VCN200 Low Alloy Steel, Appl. Mater. Model., 2012, 36(11), p 5624–5632 [in English]CrossRef A. Momeni, S.M. Abbasi, and H. Badri, Hot Deformation Behavior and Constitutive Modeling of VCN200 Low Alloy Steel, Appl. Mater. Model., 2012, 36(11), p 5624–5632 [in English]CrossRef
22.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756 [in English]CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756 [in English]CrossRef
23.
Zurück zum Zitat K. Farrell and P.R. Munroe, Grain Growth in Fe-30at.%Al, Scripta Mater., 1996, 35(5), p 615–621 [in English]CrossRef K. Farrell and P.R. Munroe, Grain Growth in Fe-30at.%Al, Scripta Mater., 1996, 35(5), p 615–621 [in English]CrossRef
24.
Zurück zum Zitat W. Li and K. Xia, Kinetics of the Grain Growth in a Binary Ti-44Al alloy and a Ternary Ti-44Al-0.15Gd Alloy, Mater. Sci. Eng. A, 2002, 329-331, p 430–434 [in English]CrossRef W. Li and K. Xia, Kinetics of the Grain Growth in a Binary Ti-44Al alloy and a Ternary Ti-44Al-0.15Gd Alloy, Mater. Sci. Eng. A, 2002, 329-331, p 430–434 [in English]CrossRef
Metadaten
Titel
Modeling the Effects of Processing Parameters on Dynamic Recrystallization Behavior of Deformed 38MnVS6 Steel
verfasst von
Sendong Gu
Liwen Zhang
Chi Zhang
Jinhua Ruan
Yu Zhen
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1460-y

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Engineering and Performance 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.