Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2015

01.10.2015

A Comparative Study of Material Flow Behavior in Friction Stir Welding Using Laminar and Turbulent Models

verfasst von: Arun Kumar Kadian, Pankaj Biswas

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Friction stir welding has been quite successful in joining aluminum alloy which has gained importance in almost all industrial sectors over the past two decades. It is a newer technique and therefore needs more attention in many sectors, flow of material being one among them. The material flow pattern actually helps in deciding the parameters required for particular tool geometry. The knowledge of material flow is very significant in removing defects from the weldment. In the work presented in this paper, the flow behavior of AA6061 under a threaded tool has been studied. The convective heat loss has been considered from all the surfaces, and a comparative study has been made with and without the use of temperature-dependent properties and their significance in the finite volume method model. The two types of models that have been implemented are turbulent and laminar models. Their thermal histories have been studied for all the cases. The material flow velocity has been analyzed to predict the flow of material. A swirl inside the weld material has been observed in all the simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.M. Thomas, E. N.-S, Patent No. 9,125,978.8, 1991 W.M. Thomas, E. N.-S, Patent No. 9,125,978.8, 1991
2.
Zurück zum Zitat E. Nicholas, Developments in the Friction-Stir Welding of Metals, ICAA-6, 6th International Conf. on Aluminium Alloys. Toyohashi, Japan, 1998 E. Nicholas, Developments in the Friction-Stir Welding of Metals, ICAA-6, 6th International Conf. on Aluminium Alloys. Toyohashi, Japan, 1998
3.
Zurück zum Zitat R.U. Kailas, Numerical Analysis of Friction Stir Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2921–2934CrossRef R.U. Kailas, Numerical Analysis of Friction Stir Welding Process, J. Mater. Eng. Perform., 2013, 22, p 2921–2934CrossRef
4.
Zurück zum Zitat E. Feulvarch, J.C. Roux, and J.M. Bergheau, A Simple and Robust Moving Mesh Technique for the Finite Element Simulation of Friction Stir Welding, J. Comput. Appl. Math., 2012, 246, p 269–277CrossRef E. Feulvarch, J.C. Roux, and J.M. Bergheau, A Simple and Robust Moving Mesh Technique for the Finite Element Simulation of Friction Stir Welding, J. Comput. Appl. Math., 2012, 246, p 269–277CrossRef
5.
Zurück zum Zitat H.W. Zhang, Z. Zhang, and J.T. Chen, 3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters, J. Mater. Process. Technol., 2007, 183, p 62–70CrossRef H.W. Zhang, Z. Zhang, and J.T. Chen, 3D Modeling of Material Flow in Friction Stir Welding Under Different Process Parameters, J. Mater. Process. Technol., 2007, 183, p 62–70CrossRef
6.
Zurück zum Zitat W.L. Zhihan Zhang, Numerical Analysis of Effect of Backplate Diffusivity on the Transient Temperature in Friction Stir Welding, J. Mater. Eng. Perform., 2013, 22, p 2446–2450CrossRef W.L. Zhihan Zhang, Numerical Analysis of Effect of Backplate Diffusivity on the Transient Temperature in Friction Stir Welding, J. Mater. Eng. Perform., 2013, 22, p 2446–2450CrossRef
7.
Zurück zum Zitat S.X. Xiaomin Deng, Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process, J. Manuf. Process., 2004, 6, p 2 S.X. Xiaomin Deng, Two-Dimensional Finite Element Simulation of Material Flow in the Friction Stir Welding Process, J. Manuf. Process., 2004, 6, p 2
8.
Zurück zum Zitat W.U. Chuan-song and W. Zhang, Visualization and Simulation of Plastic Material Flow in Friction Stir Welding of 2024 Aluminium Alloy Plates, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1445–1451CrossRef W.U. Chuan-song and W. Zhang, Visualization and Simulation of Plastic Material Flow in Friction Stir Welding of 2024 Aluminium Alloy Plates, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1445–1451CrossRef
9.
Zurück zum Zitat H. Jamshidi Aval and S. Serajzadeh, Evolution of Microstructures and Mechanical Properties in Similar and Dissimilar Friction Stir Welding of AA5086 and AA6061, Mater. Sci. Eng. A, 2011, 528, p 8071–8083CrossRef H. Jamshidi Aval and S. Serajzadeh, Evolution of Microstructures and Mechanical Properties in Similar and Dissimilar Friction Stir Welding of AA5086 and AA6061, Mater. Sci. Eng. A, 2011, 528, p 8071–8083CrossRef
10.
Zurück zum Zitat V.F. Olivier Lorrain, Understanding the Material Flow Path of Friction Stir Welding Process Using Unthreaded Tools, J. Mater. Process. Technol., 2010, 210, p 603–609CrossRef V.F. Olivier Lorrain, Understanding the Material Flow Path of Friction Stir Welding Process Using Unthreaded Tools, J. Mater. Process. Technol., 2010, 210, p 603–609CrossRef
11.
Zurück zum Zitat F. Simões and D. Rodrigues, Material Flow and Thermo-Mechanical Conditions During Friction Stir Welding of Polymers: Literature Review, Experimental Results and Empirical Analysis, Mater. Des., 2014, 59, p 344–351CrossRef F. Simões and D. Rodrigues, Material Flow and Thermo-Mechanical Conditions During Friction Stir Welding of Polymers: Literature Review, Experimental Results and Empirical Analysis, Mater. Des., 2014, 59, p 344–351CrossRef
12.
Zurück zum Zitat S.D. Ji and Q. Shi, Numerical Simulation of Material Flow Behavior of Friction Stir Welding Influenced by Rotational Tool Geometry, Comput. Mater. Sci., 2012, 63, p 218–226CrossRef S.D. Ji and Q. Shi, Numerical Simulation of Material Flow Behavior of Friction Stir Welding Influenced by Rotational Tool Geometry, Comput. Mater. Sci., 2012, 63, p 218–226CrossRef
13.
Zurück zum Zitat T.I. Yoshiaki Morisada, Three-Dimensional Visualization of Material Flow During Three-Dimensional Visualization of Material Flow During, J. Mater. Eng. Perform., 2014, 23, p 4143–4147CrossRef T.I. Yoshiaki Morisada, Three-Dimensional Visualization of Material Flow During Three-Dimensional Visualization of Material Flow During, J. Mater. Eng. Perform., 2014, 23, p 4143–4147CrossRef
14.
Zurück zum Zitat M. Song and R. Kovacevic, Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and its Validation, Int. J. Mach. Tools Manuf., 2003, 43, p 605–615CrossRef M. Song and R. Kovacevic, Thermal Modeling of Friction Stir Welding in a Moving Coordinate System and its Validation, Int. J. Mach. Tools Manuf., 2003, 43, p 605–615CrossRef
15.
Zurück zum Zitat C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tools Manuf., 2003, 43, p 1319–1326CrossRef C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tools Manuf., 2003, 43, p 1319–1326CrossRef
16.
Zurück zum Zitat D. Trimble and J. Monaghan, Force Generation During Friction Stir Welding of AA2024-T3, CIRP Ann. Manuf. Technol., 2012, 61, p 9–12CrossRef D. Trimble and J. Monaghan, Force Generation During Friction Stir Welding of AA2024-T3, CIRP Ann. Manuf. Technol., 2012, 61, p 9–12CrossRef
17.
Zurück zum Zitat G. Buffa, A. Ducato, and L. Fratini, Numerical Procedure for Residual Stresses Prediction in Friction Stir Welding, Finite Elem. Anal. Des., 2011, 47, p 470–476CrossRef G. Buffa, A. Ducato, and L. Fratini, Numerical Procedure for Residual Stresses Prediction in Friction Stir Welding, Finite Elem. Anal. Des., 2011, 47, p 470–476CrossRef
18.
Zurück zum Zitat D. Jacquin, B. De Meester, A. Simar, D. Deloison, F. Montheillet, and C. Desrayaud, A Simple Eulerian Thermomechanical Modeling of Friction Stir Welding, J. Mater. Process. Technol., 2011, 211, p 57–65CrossRef D. Jacquin, B. De Meester, A. Simar, D. Deloison, F. Montheillet, and C. Desrayaud, A Simple Eulerian Thermomechanical Modeling of Friction Stir Welding, J. Mater. Process. Technol., 2011, 211, p 57–65CrossRef
19.
Zurück zum Zitat P. Heurtier and M.J. Jones, Mechanical and Thermal Modeling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 172, p 152–158CrossRef P. Heurtier and M.J. Jones, Mechanical and Thermal Modeling of Friction Stir Welding, J. Mater. Process. Technol., 2006, 172, p 152–158CrossRef
20.
Zurück zum Zitat H.B. Dongun Kim, Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets, Eur. J. Mech. A, 2010, 29, p 204–215CrossRef H.B. Dongun Kim, Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets, Eur. J. Mech. A, 2010, 29, p 204–215CrossRef
21.
Zurück zum Zitat S.D. Carter Hamiltona, A Model of Material Flow During Friction Stir Welding, Mater. Charact., 2008, 59, p 1206–1214CrossRef S.D. Carter Hamiltona, A Model of Material Flow During Friction Stir Welding, Mater. Charact., 2008, 59, p 1206–1214CrossRef
22.
Zurück zum Zitat K. Kumar and S.V. Kailas, The role of Friction Stir Welding Tool on Material flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374CrossRef K. Kumar and S.V. Kailas, The role of Friction Stir Welding Tool on Material flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374CrossRef
23.
Zurück zum Zitat H.J. Zhang and H. Liu, Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone, J. Mater. Eng. Perform., 2012, 21, p 1182–1187CrossRef H.J. Zhang and H. Liu, Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone, J. Mater. Eng. Perform., 2012, 21, p 1182–1187CrossRef
24.
Zurück zum Zitat A. Astarita and A. Squillace, Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets, J. Mater. Eng. Perform., 2014, 23, p 3754–3761CrossRef A. Astarita and A. Squillace, Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets, J. Mater. Eng. Perform., 2014, 23, p 3754–3761CrossRef
25.
Zurück zum Zitat M.R. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152CrossRef M.R. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152CrossRef
26.
Zurück zum Zitat A.T. Quested, The Viscosity of Aluminium and its Alloys—A Review of Data and Models, J. Mater. Sci., 2004, 39, p 7221–7228CrossRef A.T. Quested, The Viscosity of Aluminium and its Alloys—A Review of Data and Models, J. Mater. Sci., 2004, 39, p 7221–7228CrossRef
27.
Zurück zum Zitat A.P. Colegrove and R.S. Hugh, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 2005, 169, p 320–327CrossRef A.P. Colegrove and R.S. Hugh, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 2005, 169, p 320–327CrossRef
28.
Zurück zum Zitat K.E. Tello and A.P. Gerlich, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Technol. Weld. Join., 2010, 15, p 260–266CrossRef K.E. Tello and A.P. Gerlich, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Technol. Weld. Join., 2010, 15, p 260–266CrossRef
Metadaten
Titel
A Comparative Study of Material Flow Behavior in Friction Stir Welding Using Laminar and Turbulent Models
verfasst von
Arun Kumar Kadian
Pankaj Biswas
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1520-3

Weitere Artikel der Ausgabe 10/2015

Journal of Materials Engineering and Performance 10/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.