Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2015

01.08.2015

Effect of Carbide Ceramic Zone on Wear Resistance of the (Fe,Cr)7C3/Fe Surface Gradient Composite

verfasst von: Fangxia Ye, Yunhua Xu, Mirabbos Hojamberdiev, Yujun Lai, Chong Wang, Xin Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we report on the influence of microstructure and mechanical properties of the (Fe,Cr)7C3 ceramic zone on wear resistance of the (Fe,Cr)7C3/Fe surface gradient composite fabricated by in situ synthesis method followed by a post-heat treatment at 1100 °C for 20 h in argon atmosphere. The phase composition, microstructure, nanoindentation hardness, elastic modulus, fracture toughness, and relative wear resistance of the (Fe,Cr)7C3/Fe surface gradient composite were investigated by means of x-ray diffraction, scanning electron microscopy, nanoindentation tester, and wear resistance testing instrument, respectively. The XRD results showed that (Fe,Cr)7C3 is the predominant crystalline phases in the fabricated composite. The volume fraction of the (Fe,Cr)7C3 particulates formed has a gradient distribution from the surface to the iron matrix, and the microstructure also changes significantly. The (Fe,Cr)7C3 bulk ceramic zone with the volume fraction of about 100% and the (Fe,Cr)7C3 dense ceramic zone with the volume fraction of about 90% were synthesized on the upper surface of the (Fe,Cr)7C3/Fe surface gradient composite, respectively. The average nanoindentation hardness and elastic modulus of the (Fe,Cr)7C3 bulk ceramic zone of the composite were determined to be 12.711 and 256.054 GPa, respectively. The fracture toughness of the (Fe,Cr)7C3 bulk ceramic zone is in the range of 2.06-4.19 MPa m1/2, and its relative wear resistance is about 56 times higher than that of the iron matrix. The (Fe,Cr)7C3 dense ceramic zone with rod-like, secondary (Fe,Cr)7C3 particulates was formed at the bottom of the (Fe,Cr)7C3 bulk ceramic zone. Rod-like, secondary (Fe,Cr)7C3 particulates are dense and grew in the direction of the iron substrate, providing higher wear resistance to the composite. The wear mechanisms of the (Fe,Cr)7C3 bulk and dense ceramic zones are considered to be microcutting, microcracking, and spalling pit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Delannay, L. Froyen, and A. Deruyttere, The Wetting of Solids by Molten Metals and Its Relation to the Preparation of Metal-Matrix Composites Composites, J. Mater. Sci., 1987, 22, p 1–16CrossRef F. Delannay, L. Froyen, and A. Deruyttere, The Wetting of Solids by Molten Metals and Its Relation to the Preparation of Metal-Matrix Composites Composites, J. Mater. Sci., 1987, 22, p 1–16CrossRef
2.
Zurück zum Zitat L. Zhong, Y. Xu, M. Hojamberdiev, J. Wang, and J. Wang, In Situ Fabrication of Titanium Carbide Particulates-Reinforced Iron Matrix Composites, Mater. Design, 2011, 32, p 3790–3795CrossRef L. Zhong, Y. Xu, M. Hojamberdiev, J. Wang, and J. Wang, In Situ Fabrication of Titanium Carbide Particulates-Reinforced Iron Matrix Composites, Mater. Design, 2011, 32, p 3790–3795CrossRef
3.
Zurück zum Zitat L. Niu, M. Hojamberdiev, and Y. Xu, Preparation of In Situ-Formed WC/Fe Composite on Gray Cast Iron Substrate by a Centrifugal Casting Process, J. Mater. Process. Technol., 2010, 210, p 1986–1990CrossRef L. Niu, M. Hojamberdiev, and Y. Xu, Preparation of In Situ-Formed WC/Fe Composite on Gray Cast Iron Substrate by a Centrifugal Casting Process, J. Mater. Process. Technol., 2010, 210, p 1986–1990CrossRef
4.
Zurück zum Zitat F. Ye, M. Hojamberdiev, Y. Xu, L. Zhong, N. Zhao, Y. Li, and X. Huang, Microstructure, Microhardness and Wear Resistance of VCp/Fe Surface Composites Fabricated In Situ, Appl. Surf. Sci., 2013, 280, p 297–303CrossRef F. Ye, M. Hojamberdiev, Y. Xu, L. Zhong, N. Zhao, Y. Li, and X. Huang, Microstructure, Microhardness and Wear Resistance of VCp/Fe Surface Composites Fabricated In Situ, Appl. Surf. Sci., 2013, 280, p 297–303CrossRef
5.
Zurück zum Zitat L. Zhong, M. Hojamberdiev, F. Ye, H. Wu, and Y. Xu, Fabrication and Microstructure of In Situ Vanadium Carbide Ceramic Particulates-Reinforced Iron Matrix Composites, Ceram. Int., 2013, 39, p 731–736CrossRef L. Zhong, M. Hojamberdiev, F. Ye, H. Wu, and Y. Xu, Fabrication and Microstructure of In Situ Vanadium Carbide Ceramic Particulates-Reinforced Iron Matrix Composites, Ceram. Int., 2013, 39, p 731–736CrossRef
6.
Zurück zum Zitat L. Zhong, Y. Xu, C. Li, F. Ye, X. Liu, and M. Hojamberdiev, Infiltration Casting and In Situ Fabrication of Tantalum Carbide Particulate-Reinforced Iron Matrix Composites, J. Compd. Mater., 2012, 46, p 895–901CrossRef L. Zhong, Y. Xu, C. Li, F. Ye, X. Liu, and M. Hojamberdiev, Infiltration Casting and In Situ Fabrication of Tantalum Carbide Particulate-Reinforced Iron Matrix Composites, J. Compd. Mater., 2012, 46, p 895–901CrossRef
7.
Zurück zum Zitat C. Fan, M.-C. Chen, C.-M. Chang, and W. Wu, Microstructure Change Caused by (Cr, Fe)23C6 Carbides in High Chromium Fe-Cr-C Hardfacing Alloys, Surf. Coat. Technol., 2006, 201, p 908–912CrossRef C. Fan, M.-C. Chen, C.-M. Chang, and W. Wu, Microstructure Change Caused by (Cr, Fe)23C6 Carbides in High Chromium Fe-Cr-C Hardfacing Alloys, Surf. Coat. Technol., 2006, 201, p 908–912CrossRef
8.
Zurück zum Zitat L. Lu, H. Soda, and A. McLean, Microstructure and Mechanical Properties of Fe-Cr-C Eutectic Composites, Mater. Sci. Eng. A, 2003, 347, p 214–222CrossRef L. Lu, H. Soda, and A. McLean, Microstructure and Mechanical Properties of Fe-Cr-C Eutectic Composites, Mater. Sci. Eng. A, 2003, 347, p 214–222CrossRef
9.
Zurück zum Zitat Y.-F. Liu, Z.-Y. Xia, J.-M. Han, G.-L. Zhang, and S.-Z. Yang, Microstructure and Wear Behavior of (Cr, Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-Surfacing Process, Surf. Coat. Technol., 2006, 201, p 863–867CrossRef Y.-F. Liu, Z.-Y. Xia, J.-M. Han, G.-L. Zhang, and S.-Z. Yang, Microstructure and Wear Behavior of (Cr, Fe)7C3 Reinforced Composite Coating Produced by Plasma Transferred Arc Weld-Surfacing Process, Surf. Coat. Technol., 2006, 201, p 863–867CrossRef
10.
Zurück zum Zitat Q. Zhang, J. He, W. Liu, and M. Zhong, Microstructure Characteristics of ZrC-Reinforced Composite Coating Produced by Laser Cladding, Surf. Coat. Technol., 2003, 162, p 140–146CrossRef Q. Zhang, J. He, W. Liu, and M. Zhong, Microstructure Characteristics of ZrC-Reinforced Composite Coating Produced by Laser Cladding, Surf. Coat. Technol., 2003, 162, p 140–146CrossRef
11.
Zurück zum Zitat L. Niu, M. Hojamberdiev, Y. Xu, and H. Wu, Microstructure and Mechanical Properties of Hadfield Steel Matrix Composite Reinforced with Oriented High-Chromium Cast Iron Bars, J. Mater. Sci., 2010, 45, p 4532–4538CrossRef L. Niu, M. Hojamberdiev, Y. Xu, and H. Wu, Microstructure and Mechanical Properties of Hadfield Steel Matrix Composite Reinforced with Oriented High-Chromium Cast Iron Bars, J. Mater. Sci., 2010, 45, p 4532–4538CrossRef
12.
Zurück zum Zitat F. Ye, M. Hojamberdiev, Y. Xu, L. Zhong, H. Yan, and Z. Chen (Fe, Cr)7C3/Fe Surface Gradient Composite: Microstructure, Microhardness, and Wear Resistance, Mater. Chem. Phys., 2014, 147, p 823–830CrossRef F. Ye, M. Hojamberdiev, Y. Xu, L. Zhong, H. Yan, and Z. Chen (Fe, Cr)7C3/Fe Surface Gradient Composite: Microstructure, Microhardness, and Wear Resistance, Mater. Chem. Phys., 2014, 147, p 823–830CrossRef
13.
Zurück zum Zitat L. Niu, W. Sun, and M. Hojamberdiev, Impact Abrasive Wear Resistance of High-Chromium Cast Iron Bars-Reinforced Hadfield Steel Matrix Composite, Adv. Mater. Res., 2011, 189–193, p 1176–1179CrossRef L. Niu, W. Sun, and M. Hojamberdiev, Impact Abrasive Wear Resistance of High-Chromium Cast Iron Bars-Reinforced Hadfield Steel Matrix Composite, Adv. Mater. Res., 2011, 189–193, p 1176–1179CrossRef
14.
Zurück zum Zitat C.-M. Lin, C.-M. Chang, J.-H. Chen, and W. Wu, Hardness, Toughness and Cracking Systems of Primary (Cr, Fe)23C6 and (Cr, Fe)7C3 Carbides in High-Carbon Cr-Based Alloys by Indentation, Mater. Sci. Eng. A, 2010, 527, p 5038–5043CrossRef C.-M. Lin, C.-M. Chang, J.-H. Chen, and W. Wu, Hardness, Toughness and Cracking Systems of Primary (Cr, Fe)23C6 and (Cr, Fe)7C3 Carbides in High-Carbon Cr-Based Alloys by Indentation, Mater. Sci. Eng. A, 2010, 527, p 5038–5043CrossRef
15.
Zurück zum Zitat H. Hill, S. Weber, S. Huth, P. Niederhofer, and W. Theisen, The Impact of Processing on Microstructure, Single-Phase Properties and Wear Resistance of MMCs, Wear, 2011, 271, p 1895–1902CrossRef H. Hill, S. Weber, S. Huth, P. Niederhofer, and W. Theisen, The Impact of Processing on Microstructure, Single-Phase Properties and Wear Resistance of MMCs, Wear, 2011, 271, p 1895–1902CrossRef
16.
Zurück zum Zitat J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270, p 287–293CrossRef J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270, p 287–293CrossRef
17.
Zurück zum Zitat J.J. Coronado, Effect of Load and Carbide Orientation on Abrasive Wear Resistance of White Cast Iron, Wear, 2011, 270, p 823–827CrossRef J.J. Coronado, Effect of Load and Carbide Orientation on Abrasive Wear Resistance of White Cast Iron, Wear, 2011, 270, p 823–827CrossRef
18.
Zurück zum Zitat K.H. Zum, Gahr, Fracture Analysis of Chromium White Cast Irons, Z. Metallkd., 1980, 71, p 103–109 K.H. Zum, Gahr, Fracture Analysis of Chromium White Cast Irons, Z. Metallkd., 1980, 71, p 103–109
19.
Zurück zum Zitat H. Berns, Microstructural Properties of Wear-Resistant Alloys, Wear, 1995, 181–183, p 271–279CrossRef H. Berns, Microstructural Properties of Wear-Resistant Alloys, Wear, 1995, 181–183, p 271–279CrossRef
20.
Zurück zum Zitat D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Fracture Toughness of Carbides in Tool Steels Evaluated by Nanoindentation, Acta Mater., 2007, 55, p 4277–4286CrossRef D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Fracture Toughness of Carbides in Tool Steels Evaluated by Nanoindentation, Acta Mater., 2007, 55, p 4277–4286CrossRef
21.
Zurück zum Zitat A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490, p 313–318CrossRef A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490, p 313–318CrossRef
22.
Zurück zum Zitat ASTM E384-11e1, Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM E384-11e1, Standard Test Method for Knoop and Vickers Hardness of Materials.
23.
Zurück zum Zitat JB/T7506-1994 (Mechanical Industry Standard of China), Standard Test Method for Fixed Abrasive Wear. JB/T7506-1994 (Mechanical Industry Standard of China), Standard Test Method for Fixed Abrasive Wear.
24.
Zurück zum Zitat H. Liu, J. Wang, H. Yang, and B. Shen, Effects of Cryogenic Treatment on Microstructure and Abrasion Resistance of CrMnB High-Chromium Cast Iron Subjected to Sub-critical Treatment, Mater. Sci. Eng. A, 2008, 478, p 324–328CrossRef H. Liu, J. Wang, H. Yang, and B. Shen, Effects of Cryogenic Treatment on Microstructure and Abrasion Resistance of CrMnB High-Chromium Cast Iron Subjected to Sub-critical Treatment, Mater. Sci. Eng. A, 2008, 478, p 324–328CrossRef
25.
Zurück zum Zitat A. Wiengmoon, J.T.H. Pearce, and T. Chairuangsri, Relationship Between Microstructure, Hardness and Corrosion Resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr High Chromium Cast Irons, Mater. Chem. Phys., 2011, 125, p 739–748CrossRef A. Wiengmoon, J.T.H. Pearce, and T. Chairuangsri, Relationship Between Microstructure, Hardness and Corrosion Resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr High Chromium Cast Irons, Mater. Chem. Phys., 2011, 125, p 739–748CrossRef
26.
Zurück zum Zitat S. Hao, High-Chromium Wear Resistant Cast Iron, Coal Industry Press, Beijing, 1992 S. Hao, High-Chromium Wear Resistant Cast Iron, Coal Industry Press, Beijing, 1992
27.
Zurück zum Zitat S. Junyl and J. Yuding, The Effect of Orientation and Thickness of Carbides on Abrasive Wear Resistance of High Chromium Iron, Proceedings of International Conference on Wear of Materials, ASME, New York, 1987, p 661–671. S. Junyl and J. Yuding, The Effect of Orientation and Thickness of Carbides on Abrasive Wear Resistance of High Chromium Iron, Proceedings of International Conference on Wear of Materials, ASME, New York, 1987, p 661–671.
28.
Zurück zum Zitat I.I. Tsypin, V.I. Kantorovich, A.D. Zuev, and V.A. Gold’shtein, Influence of M7C3 Carbides Orientation on the Wear Resistance of 300Kh20DNF White Iron, Metal. Sci. Heat Treat., 1991, 33, p 759–761CrossRef I.I. Tsypin, V.I. Kantorovich, A.D. Zuev, and V.A. Gold’shtein, Influence of M7C3 Carbides Orientation on the Wear Resistance of 300Kh20DNF White Iron, Metal. Sci. Heat Treat., 1991, 33, p 759–761CrossRef
29.
Zurück zum Zitat Y.P. Wang, D.Y. Li, L. Parent, and H. Tian, Improving the Wear Resistance of White Cast Iron Using a New Concept—High-Entropy Microstructure, Wear, 2011, 271, p 1623–1628CrossRef Y.P. Wang, D.Y. Li, L. Parent, and H. Tian, Improving the Wear Resistance of White Cast Iron Using a New Concept—High-Entropy Microstructure, Wear, 2011, 271, p 1623–1628CrossRef
30.
Zurück zum Zitat C.-M. Chang, Y.-C. Chen, and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol. Int., 2010, 43, p 929–934CrossRef C.-M. Chang, Y.-C. Chen, and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol. Int., 2010, 43, p 929–934CrossRef
31.
Zurück zum Zitat R. Colaço and R. Vilar, A Model for the Abrasive Wear of Metallic Matrix Particle-Reinforced Materials, Wear, 2003, 254, p 625–634CrossRef R. Colaço and R. Vilar, A Model for the Abrasive Wear of Metallic Matrix Particle-Reinforced Materials, Wear, 2003, 254, p 625–634CrossRef
Metadaten
Titel
Effect of Carbide Ceramic Zone on Wear Resistance of the (Fe,Cr)7C3/Fe Surface Gradient Composite
verfasst von
Fangxia Ye
Yunhua Xu
Mirabbos Hojamberdiev
Yujun Lai
Chong Wang
Xin Wang
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1582-2

Weitere Artikel der Ausgabe 8/2015

Journal of Materials Engineering and Performance 8/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.