Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2016

17.12.2015

Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium

verfasst von: Qi Wang, Qiaoyan Sun, Lin Xiao, Jun Sun

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high-cycle fatigue behavior was investigated in pure titanium after surface nanocrystallization (SNC Ti). Compared with the coarse-grained titanium (CG Ti) samples, the SNC Ti samples exhibit an improved fatigue life. The SNC has a remarkable influence on the fatigue cracks initiation and growth of pure titanium. The results show that, because the free-surface cracking is suppressed by the surface nanogradient structure in the SNC Ti, the fatigue cracks initiation sites change from the free surface to the subsurface. Meanwhile, the fatigue crack growth rate decreases due to the microstructural feature and residual compressive stress. The deformation twins in the subsurface of SNC Ti have a marked effect on the fatigue crack initiation and the crack growth. The former effect is due to the twin boundaries being preferential sites for crack initiation, while the latter is associated with the barriers that the twin boundaries pose to the propagation of dislocations. Furthermore, microstructural analysis indicates that the dislocation distribution in SNC Ti gradually becomes homogenous as fatigue processes. This homogeneous microstructure is also beneficial to the improvement of fatigue life.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Matsuno, A. Yokoyama, and T. Kawasaki, Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, hafnium, Niobium, Tantalum and Rhenium, Biomaterials, 2001, 22, p 1253–1262CrossRef H. Matsuno, A. Yokoyama, and T. Kawasaki, Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, hafnium, Niobium, Tantalum and Rhenium, Biomaterials, 2001, 22, p 1253–1262CrossRef
2.
Zurück zum Zitat Z.F. Zhang and Z.G. Wang, Grain Boundary Effects on Cyclic Deformation and Fatigue Damage, Prog. Mater. Sci., 2008, 53, p 1025–1099CrossRef Z.F. Zhang and Z.G. Wang, Grain Boundary Effects on Cyclic Deformation and Fatigue Damage, Prog. Mater. Sci., 2008, 53, p 1025–1099CrossRef
3.
Zurück zum Zitat Z.F. Zhang and Z.G. Wang, Dependence of Intergranular Fatigue Cracking on the Interactions of Persistent Slip Bands with Grain Boundaries, Acta Mater., 2003, 51, p 347–364CrossRef Z.F. Zhang and Z.G. Wang, Dependence of Intergranular Fatigue Cracking on the Interactions of Persistent Slip Bands with Grain Boundaries, Acta Mater., 2003, 51, p 347–364CrossRef
4.
Zurück zum Zitat Z.F. Zhang and Z.G. Wang, Comparison of Fatigue Cracking Possibility Along Large-and Low-Angle Grain Boundaries, Mater. Sci. Eng. A, 2000, 284, p 285–291CrossRef Z.F. Zhang and Z.G. Wang, Comparison of Fatigue Cracking Possibility Along Large-and Low-Angle Grain Boundaries, Mater. Sci. Eng. A, 2000, 284, p 285–291CrossRef
5.
Zurück zum Zitat L. Xiao and Y. Umakoshi, Orientation Dependence of Cyclic Deformation Behavior and Dislocation Structure in Ti-5at.% Al Single Crystals, Mater. Sci. Eng. A, 2003, 339, p 63–72CrossRef L. Xiao and Y. Umakoshi, Orientation Dependence of Cyclic Deformation Behavior and Dislocation Structure in Ti-5at.% Al Single Crystals, Mater. Sci. Eng. A, 2003, 339, p 63–72CrossRef
6.
Zurück zum Zitat P. Li, S.X. Li, and Z.G. Wang, Fundamental Factors on Formation Mechanism of Dislocation Arrangements in Cyclically Deformed fcc Single Crystals, Prog. Mater. Sci., 2011, 56, p 328–377CrossRef P. Li, S.X. Li, and Z.G. Wang, Fundamental Factors on Formation Mechanism of Dislocation Arrangements in Cyclically Deformed fcc Single Crystals, Prog. Mater. Sci., 2011, 56, p 328–377CrossRef
7.
Zurück zum Zitat T. Niendorf, D. Canadinc, and I. Karaman, The Role of Grain Size and Distribution on the Cyclic Stability of Titanium, Scr. Mater., 2009, 60, p 344–347CrossRef T. Niendorf, D. Canadinc, and I. Karaman, The Role of Grain Size and Distribution on the Cyclic Stability of Titanium, Scr. Mater., 2009, 60, p 344–347CrossRef
8.
Zurück zum Zitat S. Cheng, J. Xie, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280CrossRef S. Cheng, J. Xie, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280CrossRef
9.
Zurück zum Zitat T. Hanlon, Y.-N. Kwon, and S. Suresh, Grain Size Effects on the Fatigue Response of Nanocrystalline Metals, Scr. Mater., 2003, 49, p 675–680CrossRef T. Hanlon, Y.-N. Kwon, and S. Suresh, Grain Size Effects on the Fatigue Response of Nanocrystalline Metals, Scr. Mater., 2003, 49, p 675–680CrossRef
10.
Zurück zum Zitat Z.J. Zhang, P. Zhang, and Z.F. Zhang, Fatigue Cracking at Twin Boundaries: Effects of Crystallographic Orientation and Stacking Fault Energy, Acta Mater., 2012, 60, p 3113–3127CrossRef Z.J. Zhang, P. Zhang, and Z.F. Zhang, Fatigue Cracking at Twin Boundaries: Effects of Crystallographic Orientation and Stacking Fault Energy, Acta Mater., 2012, 60, p 3113–3127CrossRef
11.
Zurück zum Zitat S. Suresh, Fatigue of Material, Cambridge University Press, New York, 1991 S. Suresh, Fatigue of Material, Cambridge University Press, New York, 1991
12.
Zurück zum Zitat A. Vinogradov, S. Nagasaki, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934CrossRef A. Vinogradov, S. Nagasaki, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934CrossRef
13.
Zurück zum Zitat S. Curtis, E.R. De los Rios, and A. Levers, Analysis of the Effects of Controlled Shot Peening on Fatigue Damage of High Strength Aluminium Alloys, Int. J. Fatigue, 2003, 25, p 59–66CrossRef S. Curtis, E.R. De los Rios, and A. Levers, Analysis of the Effects of Controlled Shot Peening on Fatigue Damage of High Strength Aluminium Alloys, Int. J. Fatigue, 2003, 25, p 59–66CrossRef
14.
Zurück zum Zitat T.H. Fang, W.L. Li, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1590CrossRef T.H. Fang, W.L. Li, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1590CrossRef
15.
Zurück zum Zitat N.R. Tao, Z.B. Wang, and K. Lu, An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater., 2002, 50, p 4603–4616CrossRef N.R. Tao, Z.B. Wang, and K. Lu, An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater., 2002, 50, p 4603–4616CrossRef
16.
Zurück zum Zitat D.K. Yang, P. Cizek, and P.D. Hodgson, Work Hardening in Ultrafine-Grained Titanium: Multilayering and Grading, Acta Mater., 2013, 61, p 2840–2852CrossRef D.K. Yang, P. Cizek, and P.D. Hodgson, Work Hardening in Ultrafine-Grained Titanium: Multilayering and Grading, Acta Mater., 2013, 61, p 2840–2852CrossRef
17.
Zurück zum Zitat K. Dai and L. Shaw, Comparison Between Shot Peening and Surface Nanocrystallization and Hardening Processes, Mater. Sci. Eng. A, 2007, 463, p 46–53CrossRef K. Dai and L. Shaw, Comparison Between Shot Peening and Surface Nanocrystallization and Hardening Processes, Mater. Sci. Eng. A, 2007, 463, p 46–53CrossRef
18.
Zurück zum Zitat T. Roland, D. Retraint, and J. Lu, Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, 54, p 1949–1954CrossRef T. Roland, D. Retraint, and J. Lu, Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, 54, p 1949–1954CrossRef
19.
Zurück zum Zitat L. Yang, N.R. Tao, and L. Lu, Enhanced Fatigue Resistance of Cu with a Gradient Nanograined Surface Layer, Scr. Mater., 2013, 68, p 801–804CrossRef L. Yang, N.R. Tao, and L. Lu, Enhanced Fatigue Resistance of Cu with a Gradient Nanograined Surface Layer, Scr. Mater., 2013, 68, p 801–804CrossRef
20.
Zurück zum Zitat W.L. Li, N.R. Tao, and K. Lu, Fabrication of a Gradient Nano-micro-structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment, Scr. Mater., 2008, 59, p 546–549CrossRef W.L. Li, N.R. Tao, and K. Lu, Fabrication of a Gradient Nano-micro-structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment, Scr. Mater., 2008, 59, p 546–549CrossRef
21.
Zurück zum Zitat R. Avilés, J. Albizuri, and L.N. López de Lacalle, Influence of Low-Plasticity Ball Burnishing on the High-Cycle Fatigue Strength of Medium Carbon AISI, 1045 Steel, Int. J. Fatigue, 2013, 55, p 230–244CrossRef R. Avilés, J. Albizuri, and L.N. López de Lacalle, Influence of Low-Plasticity Ball Burnishing on the High-Cycle Fatigue Strength of Medium Carbon AISI, 1045 Steel, Int. J. Fatigue, 2013, 55, p 230–244CrossRef
22.
Zurück zum Zitat Angel L. Ortiz, Jia-Wan Tian, and Peter K. Liaw, Experimental Study of the Microstructure and Stress State of Shot Peened and Surface Mechanical Attrition Treated Nickel Alloys, Scr. Mater., 2010, 62, p 129–132CrossRef Angel L. Ortiz, Jia-Wan Tian, and Peter K. Liaw, Experimental Study of the Microstructure and Stress State of Shot Peened and Surface Mechanical Attrition Treated Nickel Alloys, Scr. Mater., 2010, 62, p 129–132CrossRef
23.
Zurück zum Zitat K. Dai and L. Shaw, Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation, Int. J. Fatigue, 2008, 30, p 1398–1408CrossRef K. Dai and L. Shaw, Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation, Int. J. Fatigue, 2008, 30, p 1398–1408CrossRef
24.
Zurück zum Zitat X.C. Liu, H.W. Zhang, and K. Lu, Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel, Science, 2013, 342, p 337–340CrossRef X.C. Liu, H.W. Zhang, and K. Lu, Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel, Science, 2013, 342, p 337–340CrossRef
25.
Zurück zum Zitat H.T. Wang, N.R. Tao, and K. Lu, Architectured Surface Layer with a Gradient Nanotwinned Structure in a Fe-Mn Austenitic Steel, Scr. Mater., 2013, 68, p 22–27CrossRef H.T. Wang, N.R. Tao, and K. Lu, Architectured Surface Layer with a Gradient Nanotwinned Structure in a Fe-Mn Austenitic Steel, Scr. Mater., 2013, 68, p 22–27CrossRef
26.
Zurück zum Zitat J.C. Villegas, L.L. Shaw, and D.L. Klrstrom, Enhanced Fatigue Resistance of a Nickel-Based Hastelloy Induced by a Surface Nanocrystallization and Hardening Process, Philos. Mag. Lett., 2005, 85, p 427–438CrossRef J.C. Villegas, L.L. Shaw, and D.L. Klrstrom, Enhanced Fatigue Resistance of a Nickel-Based Hastelloy Induced by a Surface Nanocrystallization and Hardening Process, Philos. Mag. Lett., 2005, 85, p 427–438CrossRef
27.
Zurück zum Zitat K.Y. Zhu, A. Vassel, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52, p 4101–4110CrossRef K.Y. Zhu, A. Vassel, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52, p 4101–4110CrossRef
28.
Zurück zum Zitat Q. Wang, Y.F. Yin, and J. Sun, Gradient Nano Microstructure and Its Formation Mechanism in Pure Titanium Produced by Surface Rolling Treatment, J. Mater. Res., 2014, 29, p 569–577CrossRef Q. Wang, Y.F. Yin, and J. Sun, Gradient Nano Microstructure and Its Formation Mechanism in Pure Titanium Produced by Surface Rolling Treatment, J. Mater. Res., 2014, 29, p 569–577CrossRef
29.
Zurück zum Zitat Amit Shyam and Edgar Lara-Curzio, A Model for the Formation of Fatigue Striations and Its Relationship with Small Fatigue Crack Growth in an Aluminum Alloy, Int. J. Fatigue, 2010, 32, p 1843–1852CrossRef Amit Shyam and Edgar Lara-Curzio, A Model for the Formation of Fatigue Striations and Its Relationship with Small Fatigue Crack Growth in an Aluminum Alloy, Int. J. Fatigue, 2010, 32, p 1843–1852CrossRef
30.
Zurück zum Zitat J.H. Bulloch and A.G. Callagy, A Detailed Study of the Relationship Between Fatigue Crack Growth Rate and Striation Spacing in a Range of Low Alloy Ferritic Steels, Eng. Fail. Anal., 2010, 17, p 168–178CrossRef J.H. Bulloch and A.G. Callagy, A Detailed Study of the Relationship Between Fatigue Crack Growth Rate and Striation Spacing in a Range of Low Alloy Ferritic Steels, Eng. Fail. Anal., 2010, 17, p 168–178CrossRef
31.
Zurück zum Zitat J.J. Williams, K.E. Yazzie, and M. Kittur, On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study, Metall. Mater. Trans. A, 2011, 42, p 3845–3849CrossRef J.J. Williams, K.E. Yazzie, and M. Kittur, On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study, Metall. Mater. Trans. A, 2011, 42, p 3845–3849CrossRef
32.
Zurück zum Zitat D.A. Lados and D. Apelian, Fatigue Crack Growth Characteristics in Cast Al-Si-Mg Alloys: Part I. Effect of Processing Conditions and Microstructure, Mater. Sci. Eng. A, 2004, 385, p 200–211 D.A. Lados and D. Apelian, Fatigue Crack Growth Characteristics in Cast Al-Si-Mg Alloys: Part I. Effect of Processing Conditions and Microstructure, Mater. Sci. Eng. A, 2004, 385, p 200–211
33.
Zurück zum Zitat Y. Murakami, Stress Intensity Factors Handbook, 1st ed., Pergamon, Oxford, 1987 Y. Murakami, Stress Intensity Factors Handbook, 1st ed., Pergamon, Oxford, 1987
34.
Zurück zum Zitat P.F.P. de Matos, A.J. McEvily, and P.M.S.T. de Castro, Analysis of the Effect of Cold-Working of Rivet Holes on the Fatigue Life of an Aluminum Alloy, Int. J. Fatigue, 2007, 29, p 575–586CrossRef P.F.P. de Matos, A.J. McEvily, and P.M.S.T. de Castro, Analysis of the Effect of Cold-Working of Rivet Holes on the Fatigue Life of an Aluminum Alloy, Int. J. Fatigue, 2007, 29, p 575–586CrossRef
35.
Zurück zum Zitat J.L. Robinson and C.J. Beevers, The Effects of Load Ratio, Interstitial Content, and Grain Size on Low-Stress Fatigue-Crack Propagation in α-Titanium, Met. Sci. J., 1973, 7, p 153–159CrossRef J.L. Robinson and C.J. Beevers, The Effects of Load Ratio, Interstitial Content, and Grain Size on Low-Stress Fatigue-Crack Propagation in α-Titanium, Met. Sci. J., 1973, 7, p 153–159CrossRef
36.
Zurück zum Zitat C.M. Ward-close and C.J. Beevers, The Influence of Grain Orientation on the Mode and Rate of Fatigue Crack Growth in α-Titanium, Metall. Meter. Trans. A, 1980, 11, p 1007–1017CrossRef C.M. Ward-close and C.J. Beevers, The Influence of Grain Orientation on the Mode and Rate of Fatigue Crack Growth in α-Titanium, Metall. Meter. Trans. A, 1980, 11, p 1007–1017CrossRef
37.
Zurück zum Zitat C.E. Rousseau and H.V. Tippur, Compositionally Graded Materials with Cracks Normal to the Elastic Gradient, Acta Mater., 2000, 48, p 4021–4033CrossRef C.E. Rousseau and H.V. Tippur, Compositionally Graded Materials with Cracks Normal to the Elastic Gradient, Acta Mater., 2000, 48, p 4021–4033CrossRef
38.
Zurück zum Zitat F. Yang, S.M. Yin, and Z.F. Zhang, Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the Very High Cycle Fatigue Regime, Mater. Sci. Eng. A, 2008, 491, p 131–136CrossRef F. Yang, S.M. Yin, and Z.F. Zhang, Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the Very High Cycle Fatigue Regime, Mater. Sci. Eng. A, 2008, 491, p 131–136CrossRef
39.
Zurück zum Zitat L. Xiao, Twinning Behavior in the Ti-5 at.% Al Single Crystals During Cyclic Loading Along [0001], Mater. Sci. Eng. A, 2005, 394, p 168–175CrossRef L. Xiao, Twinning Behavior in the Ti-5 at.% Al Single Crystals During Cyclic Loading Along [0001], Mater. Sci. Eng. A, 2005, 394, p 168–175CrossRef
40.
Zurück zum Zitat J.Z. Zhou, S. Huang, and H.S. Chen, Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening, Mater. Sci. Eng. A, 2012, 539, p 360–368CrossRef J.Z. Zhou, S. Huang, and H.S. Chen, Effect of Repeated Impacts on Mechanical Properties and Fatigue Fracture Morphologies of 6061-T6 Aluminum Subject to Laser Peening, Mater. Sci. Eng. A, 2012, 539, p 360–368CrossRef
41.
Zurück zum Zitat D.K. Xu and E.H. Han, Relationship Between Fatigue Crack Initiation and Activated Twins in As-extruded Pure Magnesium, Scr. Mater., 2013, 69, p 702–705CrossRef D.K. Xu and E.H. Han, Relationship Between Fatigue Crack Initiation and Activated Twins in As-extruded Pure Magnesium, Scr. Mater., 2013, 69, p 702–705CrossRef
42.
Zurück zum Zitat W. Liu, G.H. Wu, and A.M. Korsunsky, Grain Refinement and Fatigue Strengthening Mechanisms in As-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr Magnesium Alloys by Shot Peening, Int. J. Plast., 2013, 49, p 16–35CrossRef W. Liu, G.H. Wu, and A.M. Korsunsky, Grain Refinement and Fatigue Strengthening Mechanisms in As-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr Magnesium Alloys by Shot Peening, Int. J. Plast., 2013, 49, p 16–35CrossRef
43.
Zurück zum Zitat M.D. Sangid, G.J. Pataky, and J. Maier, Superior Fatigue Crack Growth Resistance, Irreversibility, and Fatigue Crack Growth-Microstructure Relationship of Nanocrystalline Alloys, Acta Mater., 2011, 59, p 7340–7355CrossRef M.D. Sangid, G.J. Pataky, and J. Maier, Superior Fatigue Crack Growth Resistance, Irreversibility, and Fatigue Crack Growth-Microstructure Relationship of Nanocrystalline Alloys, Acta Mater., 2011, 59, p 7340–7355CrossRef
44.
Zurück zum Zitat T. Yokobori, A.T. Yokobori, Jr., and A. Kamei, Dislocation Dynamics Theory for Fatigue Crack Growth, Int. J. Fract., 1975, 11, p 781–788CrossRef T. Yokobori, A.T. Yokobori, Jr., and A. Kamei, Dislocation Dynamics Theory for Fatigue Crack Growth, Int. J. Fract., 1975, 11, p 781–788CrossRef
45.
Zurück zum Zitat G.A. Webster and A.N. Ezeilo, Residual Stress Distributions and Their Influence on Fatigue Lifetimes, Int. J. Fatigue, 2001, 23, p S375–S383CrossRef G.A. Webster and A.N. Ezeilo, Residual Stress Distributions and Their Influence on Fatigue Lifetimes, Int. J. Fatigue, 2001, 23, p S375–S383CrossRef
46.
Zurück zum Zitat Y.K. Gao and X.R. Wu, Experimental Investigation and Fatigue Life Prediction for 7475-T7351 Aluminum Alloy With and Without Shot Peening-Induced Residual Stresses, Acta Mater., 2011, 59, p 3737–3747CrossRef Y.K. Gao and X.R. Wu, Experimental Investigation and Fatigue Life Prediction for 7475-T7351 Aluminum Alloy With and Without Shot Peening-Induced Residual Stresses, Acta Mater., 2011, 59, p 3737–3747CrossRef
Metadaten
Titel
Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium
verfasst von
Qi Wang
Qiaoyan Sun
Lin Xiao
Jun Sun
Publikationsdatum
17.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1819-0

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Engineering and Performance 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.