Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2017

08.12.2016

Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel

verfasst von: S. Choudhary, V. Nanda, S. Shekhar, A. Garg, K. Mondal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Warm rolling of a mild steel at 600 °C generates a microstructural anisotropy in the different planes corresponding to rolling direction, normal direction and transverse direction manifested by differences in the grain structure and the type of grain boundaries. The work concentrates on studying the effect of this microstructural anisotropy on the electrochemical behavior of the steel plates using microscopic examination and electron backscattered diffraction. The results show that the corrosion behavior of the samples depends mainly on the fraction of high-angle grain boundaries or corresponding average grain size, which, in turn, depends on the degree of deformation on different planes determined by the extent of thickness reduction. On the other hand, low-angle grain boundaries have little effect on the corrosion of all the three different planes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.F. Hays, Now is the Time, World Corros. Organ., 2013, p 1–2 G.F. Hays, Now is the Time, World Corros. Organ., 2013, p 1–2
2.
Zurück zum Zitat D.A. López, W.H. Schreiner, S.R. de Sánchez, and S. Simison, The Influence of Carbon Steel Microstructure on Corrosion Layers, Appl. Surf. Sci., 2003, 207(1–4), p 69–85CrossRef D.A. López, W.H. Schreiner, S.R. de Sánchez, and S. Simison, The Influence of Carbon Steel Microstructure on Corrosion Layers, Appl. Surf. Sci., 2003, 207(1–4), p 69–85CrossRef
3.
Zurück zum Zitat D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35(2), p 139–149CrossRef D. Clover, B. Kinsella, B. Pejcic, and R. De Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35(2), p 139–149CrossRef
4.
Zurück zum Zitat A. Dugstad, H. Hemmer, and M. Seiersten, Effect of Steel Microstructure on Corrosion Rate and Protective Iron Carbonate Film Formation, Corrosion, 2001, 57(4), p 369–378CrossRef A. Dugstad, H. Hemmer, and M. Seiersten, Effect of Steel Microstructure on Corrosion Rate and Protective Iron Carbonate Film Formation, Corrosion, 2001, 57(4), p 369–378CrossRef
5.
Zurück zum Zitat P.D. Bilmes, C.L. Llorente, L. Saire Huamán, L.M. Gassa, and C.A. Gervasi, Microstructure and Pitting Corrosion of 13CrNiMo Weld Metals, Corros. Sci., 2006, 48(10), p 3261–3270CrossRef P.D. Bilmes, C.L. Llorente, L. Saire Huamán, L.M. Gassa, and C.A. Gervasi, Microstructure and Pitting Corrosion of 13CrNiMo Weld Metals, Corros. Sci., 2006, 48(10), p 3261–3270CrossRef
6.
Zurück zum Zitat W.R. Osório, C.M. Freire, and A. Garcia, The Role of Macrostructural Morphology and Grain Size on the Corrosion Resistance of Zn and Al Castings, Mater. Sci. Eng. A., 2005, 402(1–2), p 22–32CrossRef W.R. Osório, C.M. Freire, and A. Garcia, The Role of Macrostructural Morphology and Grain Size on the Corrosion Resistance of Zn and Al Castings, Mater. Sci. Eng. A., 2005, 402(1–2), p 22–32CrossRef
7.
Zurück zum Zitat K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion : A Review, Corrosion, 2010, 66(7), p 1–13CrossRef K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion : A Review, Corrosion, 2010, 66(7), p 1–13CrossRef
8.
Zurück zum Zitat L.Y. Qin, J.S. Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Trans. Nonferrous Met. Soc. China (English Ed.), 2010, 20(1), p 82–89CrossRef L.Y. Qin, J.S. Lian, and Q. Jiang, Effect of Grain Size on Corrosion Behavior of Electrodeposited Bulk Nanocrystalline Ni, Trans. Nonferrous Met. Soc. China (English Ed.), 2010, 20(1), p 82–89CrossRef
9.
Zurück zum Zitat K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204CrossRef K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204CrossRef
10.
Zurück zum Zitat A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani, Effect of Grain Size on Pitting Corrosion of 304L Austenitic Stainless Steel, Corros. Sci., 2015, 94(1), p 368–376CrossRef A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, and M. Mazinani, Effect of Grain Size on Pitting Corrosion of 304L Austenitic Stainless Steel, Corros. Sci., 2015, 94(1), p 368–376CrossRef
11.
Zurück zum Zitat A. Di Schino and J. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI, 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634CrossRef A. Di Schino and J. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI, 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634CrossRef
12.
Zurück zum Zitat Y. Li, F. Wang, and G. Liu, Grain Size Effect on the Electrochemical Corrosion Behavior of Surface Nanocrystallized Low-Carbon Steel, Corrosion, 2004, 60(10), p 891–896CrossRef Y. Li, F. Wang, and G. Liu, Grain Size Effect on the Electrochemical Corrosion Behavior of Surface Nanocrystallized Low-Carbon Steel, Corrosion, 2004, 60(10), p 891–896CrossRef
13.
Zurück zum Zitat R. Rofagha, R. Langer, A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, The Corrosion Behaviour of Nanocrystalline Nickel, Scr. Metall. Mater., 1991, 25(12), p 2867–2872CrossRef R. Rofagha, R. Langer, A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust, The Corrosion Behaviour of Nanocrystalline Nickel, Scr. Metall. Mater., 1991, 25(12), p 2867–2872CrossRef
14.
Zurück zum Zitat W. Luo, C. Qian, X.J. Wu, and M. Yan, Electrochemical Corrosion Behavior of Nanocrystalline Copper Bulk, Mater. Sci. Eng. A, 2007, 452(1), p 524–528CrossRef W. Luo, C. Qian, X.J. Wu, and M. Yan, Electrochemical Corrosion Behavior of Nanocrystalline Copper Bulk, Mater. Sci. Eng. A, 2007, 452(1), p 524–528CrossRef
15.
Zurück zum Zitat A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, and G. Cerisola, Corrosion Behaviour of Nanocrystalline Cu90Ni10 Alloy in Neutral Solution Containing Chlorides, Corros. Sci., 1998, 41(3), p 463–475CrossRef A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, and G. Cerisola, Corrosion Behaviour of Nanocrystalline Cu90Ni10 Alloy in Neutral Solution Containing Chlorides, Corros. Sci., 1998, 41(3), p 463–475CrossRef
16.
Zurück zum Zitat D. Song, A. Ma, J. Jiang, P. Lin, and D. Yang, Corrosion Behavior of Ultra-Fine Grained Industrial Pure Al Fabricated by ECAP, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1065–1070CrossRef D. Song, A. Ma, J. Jiang, P. Lin, and D. Yang, Corrosion Behavior of Ultra-Fine Grained Industrial Pure Al Fabricated by ECAP, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1065–1070CrossRef
17.
Zurück zum Zitat A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51(3), p 225–229CrossRef A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, and Y.T. Zhu, Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51(3), p 225–229CrossRef
18.
Zurück zum Zitat S. Krishnan, J. Dumbre, S. Bhatt, E.T. Akinlabi, and R. Ramalingam, Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI, 304L Austenitic Stainless Steel, Int. J. Mech. Aerosp. Ind. Mechatron. Eng., 2013, 7(4), p 239–242 S. Krishnan, J. Dumbre, S. Bhatt, E.T. Akinlabi, and R. Ramalingam, Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI, 304L Austenitic Stainless Steel, Int. J. Mech. Aerosp. Ind. Mechatron. Eng., 2013, 7(4), p 239–242
19.
Zurück zum Zitat K.S. Shin, M.Z. Bian, and N.D. Nam, Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals, Jom., 2012, 64(6), p 664–670CrossRef K.S. Shin, M.Z. Bian, and N.D. Nam, Effects of Crystallographic Orientation on Corrosion Behavior of Magnesium Single Crystals, Jom., 2012, 64(6), p 664–670CrossRef
20.
Zurück zum Zitat M. Liu, D. Qiu, M. Zhao, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scr. Mater., 2008, 58(1), p 421–424CrossRef M. Liu, D. Qiu, M. Zhao, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scr. Mater., 2008, 58(1), p 421–424CrossRef
21.
Zurück zum Zitat J.W. Schultze, B. Davepon, F. Karman, C. Rosenkranz, A. Schreiber, and O. Voigt, Corrosion and Passivation in Nanoscopic and Microscopic Dimensions: The Influence of Grains and Grain Boundaries, Corros. Eng. Sci. Technol., 2004, 39(1), p 45–52CrossRef J.W. Schultze, B. Davepon, F. Karman, C. Rosenkranz, A. Schreiber, and O. Voigt, Corrosion and Passivation in Nanoscopic and Microscopic Dimensions: The Influence of Grains and Grain Boundaries, Corros. Eng. Sci. Technol., 2004, 39(1), p 45–52CrossRef
22.
Zurück zum Zitat J. Toribio, Residual Stress Effects in Stress-Corrosion Cracking, J. Mater. Eng. Perform., 1998, 7(1), p 173–182CrossRef J. Toribio, Residual Stress Effects in Stress-Corrosion Cracking, J. Mater. Eng. Perform., 1998, 7(1), p 173–182CrossRef
23.
Zurück zum Zitat M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill, New York, 1987 M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw Hill, New York, 1987
24.
Zurück zum Zitat M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam, Formation of Cr23C6 During the Sensitization of AISI, 304 Stainless Steel and its Effect to Pitting Corrosion, Int. J. Electrochem. Sci., 2012, 7(10), p 9465–9477 M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam, Formation of Cr23C6 During the Sensitization of AISI, 304 Stainless Steel and its Effect to Pitting Corrosion, Int. J. Electrochem. Sci., 2012, 7(10), p 9465–9477
25.
Zurück zum Zitat M. Saenz de Miera, M. Curioni, P. Skeldon, and G.E. Thompson, The Behaviour of Second Phase Particles During Anodizing of Aluminium Alloys, Corros. Sci., 2010, 52(7), p 2489–2497CrossRef M. Saenz de Miera, M. Curioni, P. Skeldon, and G.E. Thompson, The Behaviour of Second Phase Particles During Anodizing of Aluminium Alloys, Corros. Sci., 2010, 52(7), p 2489–2497CrossRef
26.
Zurück zum Zitat F. Montheillet, J.J. Jonas, and M. Benferrah, Development of Anisotropy During the Cold Rolling of Aluminium Sheet, Int. J. Mech. Sci., 1991, 33(3), p 197–209CrossRef F. Montheillet, J.J. Jonas, and M. Benferrah, Development of Anisotropy During the Cold Rolling of Aluminium Sheet, Int. J. Mech. Sci., 1991, 33(3), p 197–209CrossRef
27.
Zurück zum Zitat N.S. Lee, J.H. Chen, P.W. Kao, L.W. Chang, T.Y. Tseng, and J.R. Su, Anisotropic Tensile Ductility of Cold-Rolled and Annealed Aluminum Alloy Sheet and the Beneficial Effect of Post-anneal Rolling, Scr. Mater., 2009, 60(5), p 340–343CrossRef N.S. Lee, J.H. Chen, P.W. Kao, L.W. Chang, T.Y. Tseng, and J.R. Su, Anisotropic Tensile Ductility of Cold-Rolled and Annealed Aluminum Alloy Sheet and the Beneficial Effect of Post-anneal Rolling, Scr. Mater., 2009, 60(5), p 340–343CrossRef
28.
Zurück zum Zitat S. Wronski, M. Wrobel, A. Baczmanski, and K. Wierzbanowski, Effects of Cross-Rolling on Residual Stress, Texture and Plastic Anisotropy in f.c.c. and b.c.c. Metals, Mater. Charact., 2013, 77(1), p 116–126CrossRef S. Wronski, M. Wrobel, A. Baczmanski, and K. Wierzbanowski, Effects of Cross-Rolling on Residual Stress, Texture and Plastic Anisotropy in f.c.c. and b.c.c. Metals, Mater. Charact., 2013, 77(1), p 116–126CrossRef
29.
Zurück zum Zitat H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani, Effects of Rolling Reduction on Mechanical Properties Anisotropy of Commercially Pure Titanium, Mater. Des., 2012, 34(1), p 268–274CrossRef H. Nasiri-Abarbekoh, A. Ekrami, A.A. Ziaei-Moayyed, and M. Shohani, Effects of Rolling Reduction on Mechanical Properties Anisotropy of Commercially Pure Titanium, Mater. Des., 2012, 34(1), p 268–274CrossRef
30.
Zurück zum Zitat D.N. Hawkins, Warm Working of Steels, J. Mech. Work. Technol., 1985, 11(1), p 5–21CrossRef D.N. Hawkins, Warm Working of Steels, J. Mech. Work. Technol., 1985, 11(1), p 5–21CrossRef
31.
Zurück zum Zitat R.G. Bruna, Effects of Hot and Warm Rolling on Microstructure, Texture and Properties of Low Carbon Steel, Metall. Mater., 2011, 64(1), p 57–62 R.G. Bruna, Effects of Hot and Warm Rolling on Microstructure, Texture and Properties of Low Carbon Steel, Metall. Mater., 2011, 64(1), p 57–62
32.
Zurück zum Zitat D.N. Hawkins and A.A. Shuttleworth, The Effect of Warm Rolling on the Structure and Properties of a Low-Carbon Steel, J. Mech. Work. Technol., 1979, 2(4), p 333–345CrossRef D.N. Hawkins and A.A. Shuttleworth, The Effect of Warm Rolling on the Structure and Properties of a Low-Carbon Steel, J. Mech. Work. Technol., 1979, 2(4), p 333–345CrossRef
33.
Zurück zum Zitat A.O. Humphreys, D. Liu, M.R. Toroghinejad, E. Essadiqi, and J.J. Jonas, Warm Rolling Behaviour of Low Carbon Steels, Mater. Sci. Technol., 2003, 19(6), p 709–714CrossRef A.O. Humphreys, D. Liu, M.R. Toroghinejad, E. Essadiqi, and J.J. Jonas, Warm Rolling Behaviour of Low Carbon Steels, Mater. Sci. Technol., 2003, 19(6), p 709–714CrossRef
34.
Zurück zum Zitat H. Bhadeshia, and R. Honeycombe, Steels: Microstructure and Properties, Elsevier, New York, 2006 H. Bhadeshia, and R. Honeycombe, Steels: Microstructure and Properties, Elsevier, New York, 2006
36.
Zurück zum Zitat Z.A. Foroulis and H.H. Uhlig, Effect of Cold-Work on Corrosion of Iron and Steel in Hydrochloric Acid, J. Electrochem. Soc., 1964, 111(5), p 522–528CrossRef Z.A. Foroulis and H.H. Uhlig, Effect of Cold-Work on Corrosion of Iron and Steel in Hydrochloric Acid, J. Electrochem. Soc., 1964, 111(5), p 522–528CrossRef
37.
Zurück zum Zitat A. Kurk, M. Kciuk, and M. Basiaga, Influence of Cold Rolling on the Corrosion Resistance of Austenitic Stainless Steel, J. Achiev. Mater. Manuf. Eng., 2010, 38(2), p 154–162 A. Kurk, M. Kciuk, and M. Basiaga, Influence of Cold Rolling on the Corrosion Resistance of Austenitic Stainless Steel, J. Achiev. Mater. Manuf. Eng., 2010, 38(2), p 154–162
38.
Zurück zum Zitat V. Ocampo and L. Veleva, Effect of Cold Reduction on Corrosion of Carbon Steel in Aerated 3% Sodium Chloride, Corrosion, 2002, 58(7), p 601–607CrossRef V. Ocampo and L. Veleva, Effect of Cold Reduction on Corrosion of Carbon Steel in Aerated 3% Sodium Chloride, Corrosion, 2002, 58(7), p 601–607CrossRef
39.
Zurück zum Zitat N. Dang Nam, D. Young Lee, J. Gu Kim, and N. Jin Park, Effect of Cold Rolling on Corrosion Properties of Low Alloy Steel in an Acid-Chloride Solution, Met. Mater. Int., 2014, 20(3), p 469–474CrossRef N. Dang Nam, D. Young Lee, J. Gu Kim, and N. Jin Park, Effect of Cold Rolling on Corrosion Properties of Low Alloy Steel in an Acid-Chloride Solution, Met. Mater. Int., 2014, 20(3), p 469–474CrossRef
40.
Zurück zum Zitat G. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1976 G. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1976
41.
Zurück zum Zitat Z. Wusatowski, and Z. Wusatowski, Phenomena Occurring During Plastic Working of Metals, Fundam. Roll., Pergamon press, Oxford, 1969, p 1–19 Z. Wusatowski, and Z. Wusatowski, Phenomena Occurring During Plastic Working of Metals, Fundam. Roll., Pergamon press, Oxford, 1969, p 1–19
42.
Zurück zum Zitat R. Lapovok, D. Orlov, I.B. Timokhina, A. Pougis, L.S. Toth, P.D. Hodgson, A. Haldar, and D. Bhattacharjee, Asymmetric Rolling of Interstitial-Free Steel Using One Idle Roll, Metall. Mater. Trans. A, 2012, 43(4), p 1328–1340CrossRef R. Lapovok, D. Orlov, I.B. Timokhina, A. Pougis, L.S. Toth, P.D. Hodgson, A. Haldar, and D. Bhattacharjee, Asymmetric Rolling of Interstitial-Free Steel Using One Idle Roll, Metall. Mater. Trans. A, 2012, 43(4), p 1328–1340CrossRef
43.
Zurück zum Zitat G.E. Dieter, H.A. Kunh, S.L. Semiatin, eds., Handbook of Workability and Process Design, ASM International, 2003 G.E. Dieter, H.A. Kunh, S.L. Semiatin, eds., Handbook of Workability and Process Design, ASM International, 2003
44.
Zurück zum Zitat R.W. Cahn and P. Haasen, eds., Physical Metallurgy, 4th edn., Elsevier, New York, 1996 R.W. Cahn and P. Haasen, eds., Physical Metallurgy, 4th edn., Elsevier, New York, 1996
45.
Zurück zum Zitat G. Langford, Deformation of Pearlite, Metall. Trans. A, 1977, 8(6), p 861–875CrossRef G. Langford, Deformation of Pearlite, Metall. Trans. A, 1977, 8(6), p 861–875CrossRef
46.
Zurück zum Zitat B. Karlsson and G. Lindén, Plastic Deformation of Ferrite—Pearlite Structures in Steel, Mater. Sci. Eng., 1975, 17(2), p 209–219CrossRef B. Karlsson and G. Lindén, Plastic Deformation of Ferrite—Pearlite Structures in Steel, Mater. Sci. Eng., 1975, 17(2), p 209–219CrossRef
47.
Zurück zum Zitat Y. Pan, B.L. Adams, T. Olson, and N. Panayotou, Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750, Acta Mater., 1996, 44(12), p 4685–4695CrossRef Y. Pan, B.L. Adams, T. Olson, and N. Panayotou, Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750, Acta Mater., 1996, 44(12), p 4685–4695CrossRef
48.
Zurück zum Zitat V.Y. Gertsman and S.M. Bruemmer, Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys, Acta Mater., 2001, 49(9), p 1589–1598CrossRef V.Y. Gertsman and S.M. Bruemmer, Study of Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Alloys, Acta Mater., 2001, 49(9), p 1589–1598CrossRef
49.
Zurück zum Zitat M. Shimada, H. Kokawa, Z. Wang, Y. Sato, and I. Karibe, Optimization of Grain Boundary Character Distribution for Intergranular Corrosion Resistant 304 Stainless Steel by Twin-Induced Grain Boundary Engineering, Acta Mater., 2002, 50(9), p 2331–2341CrossRef M. Shimada, H. Kokawa, Z. Wang, Y. Sato, and I. Karibe, Optimization of Grain Boundary Character Distribution for Intergranular Corrosion Resistant 304 Stainless Steel by Twin-Induced Grain Boundary Engineering, Acta Mater., 2002, 50(9), p 2331–2341CrossRef
50.
Zurück zum Zitat E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson, On the Relationship Between Grain Boundary Connectivity, Coincident Site Lattice Boundaries, and Intergranular Stress Corrosion Cracking, Corros. Sci., 2004, 46(10), p 2383–2404CrossRef E.M. Lehockey, A.M. Brennenstuhl, and I. Thompson, On the Relationship Between Grain Boundary Connectivity, Coincident Site Lattice Boundaries, and Intergranular Stress Corrosion Cracking, Corros. Sci., 2004, 46(10), p 2383–2404CrossRef
51.
Zurück zum Zitat A. Bałkowiec, J. Michalski, H. Matysiak, and K.J. Kurzydlowski, Influence of Grain Boundaries Misorientation Angle on Intergranular Corrosion in 2024-T3 Aluminium, Mater. Sci., 2012, 29(4), p 305–311 A. Bałkowiec, J. Michalski, H. Matysiak, and K.J. Kurzydlowski, Influence of Grain Boundaries Misorientation Angle on Intergranular Corrosion in 2024-T3 Aluminium, Mater. Sci., 2012, 29(4), p 305–311
Metadaten
Titel
Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel
verfasst von
S. Choudhary
V. Nanda
S. Shekhar
A. Garg
K. Mondal
Publikationsdatum
08.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2465-x

Weitere Artikel der Ausgabe 1/2017

Journal of Materials Engineering and Performance 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.