Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2019

21.08.2019

Few-Layers Graphene Film and Copper Surface Morphology for Improved Corrosion Protection of Copper

verfasst von: Sultan Akhtar, Tahar Laoui, Ahmed Ibrahim, A. Madhan Kumar, Junaid Ahmed, Ihsan-ul-Haq Toor

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene has shown excellent corrosion protection of copper (Cu). The corrosion protection of Cu is governed by the characteristics of the deposited graphene and Cu surface morphology underneath. In this work, graphene films (1-2, 4-5 layers) were deposited on Cu using a chemical vapor deposition by changing hydrogen (H2) concentration during the annealing stage. The chemical structure and surface microstructural features of graphene/Cu were inspected by Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The electrochemical corrosion performance of graphene/Cu was studied in 0.5 M sodium chloride solution using potentiodynamic polarization and electrochemical impedance spectroscopic measurements. The 1-2 layers of graphene and rough Cu surface were obtained for low H2 concentrations (0 and 2.5%), whereas high H2 concentrations, 20 and 50%, resulted in a smooth Cu surface and 4-5 layers of graphene. Our results showed that Cu with a smooth surface and multilayer graphene film exhibited the best corrosion resistance against electrochemical degradation. Tafel analysis revealed that Cu with 4-5 layers of graphene coating corroded nearly three orders of magnitude slower than the annealed Cu, without graphene coating. The results of this study can be useful for several applications where Cu is in close contact with salt species.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.P. Singh et al., The Production of a Corrosion Resistant Graphene Reinforced Composite Coating on Copper by Electrophoretic Deposition, Carbon, 2013, 61, p 47–56CrossRef B.P. Singh et al., The Production of a Corrosion Resistant Graphene Reinforced Composite Coating on Copper by Electrophoretic Deposition, Carbon, 2013, 61, p 47–56CrossRef
2.
Zurück zum Zitat V.K. Mittal et al., Formation and Characterization of Bi-layer Oxide Coating on Carbon-Steel for Improving Corrosion Resistance, Thin Solid Films, 2009, 517(5), p 1672–1676CrossRef V.K. Mittal et al., Formation and Characterization of Bi-layer Oxide Coating on Carbon-Steel for Improving Corrosion Resistance, Thin Solid Films, 2009, 517(5), p 1672–1676CrossRef
3.
Zurück zum Zitat Y. Chen et al., Fabrication and Anti-corrosion Property of Superhydrophobic Hybrid Film on Copper Surface and Its Formation Mechanism, Surf. Interface Anal., 2009, 41(11), p 872–877CrossRef Y. Chen et al., Fabrication and Anti-corrosion Property of Superhydrophobic Hybrid Film on Copper Surface and Its Formation Mechanism, Surf. Interface Anal., 2009, 41(11), p 872–877CrossRef
4.
Zurück zum Zitat J.S. Bunch et al., Impermeable Atomic Membranes from Graphene Sheets, Nano Lett., 2008, 8(8), p 2458–2462CrossRef J.S. Bunch et al., Impermeable Atomic Membranes from Graphene Sheets, Nano Lett., 2008, 8(8), p 2458–2462CrossRef
5.
Zurück zum Zitat O. Leenaerts, B. Partoens, and F.M. Peeters, Water on Graphene: Hydrophobicity and Dipole Moment Using Density Functional Theory, Phys. Rev. B, 2009, 79(23), p 235440CrossRef O. Leenaerts, B. Partoens, and F.M. Peeters, Water on Graphene: Hydrophobicity and Dipole Moment Using Density Functional Theory, Phys. Rev. B, 2009, 79(23), p 235440CrossRef
6.
Zurück zum Zitat T. Kim, S. Lee, and H. Park, A Study of Water Transport as a Function of the Micro-Porous Layer Arrangement in PEMFCs, Int. J. Hydrog. Energy, 2010, 35(16), p 8631–8643CrossRef T. Kim, S. Lee, and H. Park, A Study of Water Transport as a Function of the Micro-Porous Layer Arrangement in PEMFCs, Int. J. Hydrog. Energy, 2010, 35(16), p 8631–8643CrossRef
7.
Zurück zum Zitat N.T. Kirkland et al., Exploring Graphene as a Corrosion Protection Barrier, Corros. Sci., 2012, 56, p 1–4CrossRef N.T. Kirkland et al., Exploring Graphene as a Corrosion Protection Barrier, Corros. Sci., 2012, 56, p 1–4CrossRef
8.
Zurück zum Zitat C. Liang et al., Hydrogen Etching Effect on Single-Crystal Graphene Domains. In: 2013 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2013), 2013: p 697–700 C. Liang et al., Hydrogen Etching Effect on Single-Crystal Graphene Domains. In: 2013 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS 2013), 2013: p 697–700
9.
Zurück zum Zitat D. Prasai et al., Graphene: Corrosion-Inhibiting Coating, ACS Nano, 2012, 6(2), p 1102–1108CrossRef D. Prasai et al., Graphene: Corrosion-Inhibiting Coating, ACS Nano, 2012, 6(2), p 1102–1108CrossRef
10.
Zurück zum Zitat R.K.S. Raman et al., Protecting Copper from Electrochemical Degradation by Graphene Coating, Carbon, 2012, 50(11), p 4040–4045CrossRef R.K.S. Raman et al., Protecting Copper from Electrochemical Degradation by Graphene Coating, Carbon, 2012, 50(11), p 4040–4045CrossRef
11.
Zurück zum Zitat Y.H. Dong, Q.Q. Liu, and Q. Zhou, Corrosion Behavior of Cu during Graphene Growth by CVD, Corros. Sci., 2014, 89, p 214–219CrossRef Y.H. Dong, Q.Q. Liu, and Q. Zhou, Corrosion Behavior of Cu during Graphene Growth by CVD, Corros. Sci., 2014, 89, p 214–219CrossRef
12.
Zurück zum Zitat A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, 9(1), p 30–35CrossRef A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, 9(1), p 30–35CrossRef
13.
Zurück zum Zitat Y.Q. Liang et al., Large-Scale Synthetic Graphene on Cu as Anti-Corrosion Coating by Chemical Vapor Deposition Approach, Sci. Adv. Mater., 2014, 6(3), p 545–549CrossRef Y.Q. Liang et al., Large-Scale Synthetic Graphene on Cu as Anti-Corrosion Coating by Chemical Vapor Deposition Approach, Sci. Adv. Mater., 2014, 6(3), p 545–549CrossRef
14.
Zurück zum Zitat A. Ibrahim et al., Effects of Annealing on Copper Substrate Surface Morphology and Graphene Growth by Chemical Vapor Deposition, Carbon, 2015, 94, p 369–377CrossRef A. Ibrahim et al., Effects of Annealing on Copper Substrate Surface Morphology and Graphene Growth by Chemical Vapor Deposition, Carbon, 2015, 94, p 369–377CrossRef
15.
Zurück zum Zitat W. Liu et al., Synthesis of High-Quality Monolayer and Bilayer Graphene on Copper Using Chemical Vapor Deposition, Carbon, 2011, 49(13), p 4122–4130CrossRef W. Liu et al., Synthesis of High-Quality Monolayer and Bilayer Graphene on Copper Using Chemical Vapor Deposition, Carbon, 2011, 49(13), p 4122–4130CrossRef
16.
Zurück zum Zitat H. Kim et al., Activation Energy Paths for Graphene Nucleation and Growth on Cu, ACS Nano, 2012, 6(4), p 3614–3623CrossRef H. Kim et al., Activation Energy Paths for Graphene Nucleation and Growth on Cu, ACS Nano, 2012, 6(4), p 3614–3623CrossRef
17.
Zurück zum Zitat H. Wang et al., Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation (vol 134, pg 3627, 2012), J. Am. Chem. Soc., 2012, 134(44), p 18476–18476CrossRef H. Wang et al., Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation (vol 134, pg 3627, 2012), J. Am. Chem. Soc., 2012, 134(44), p 18476–18476CrossRef
18.
Zurück zum Zitat S. Bhaviripudi et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst, Nano Lett., 2010, 10(10), p 4128–4133CrossRef S. Bhaviripudi et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst, Nano Lett., 2010, 10(10), p 4128–4133CrossRef
19.
Zurück zum Zitat Y.C. Shin and J. Kong, Hydrogen-Excluded Graphene Synthesis via Atmospheric Pressure Chemical Vapor Deposition, Carbon, 2013, 59, p 439–447CrossRef Y.C. Shin and J. Kong, Hydrogen-Excluded Graphene Synthesis via Atmospheric Pressure Chemical Vapor Deposition, Carbon, 2013, 59, p 439–447CrossRef
20.
Zurück zum Zitat L. Gan and Z.T. Luo, Turning Off Hydrogen to Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper, ACS Nano, 2013, 7(10), p 9480–9488CrossRef L. Gan and Z.T. Luo, Turning Off Hydrogen to Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper, ACS Nano, 2013, 7(10), p 9480–9488CrossRef
21.
Zurück zum Zitat Z.J. Wang et al., Direct Observation of Graphene Growth and Associated Copper Substrate Dynamics by In Situ Scanning Electron Microscopy, ACS Nano, 2015, 9(2), p 1506–1519CrossRef Z.J. Wang et al., Direct Observation of Graphene Growth and Associated Copper Substrate Dynamics by In Situ Scanning Electron Microscopy, ACS Nano, 2015, 9(2), p 1506–1519CrossRef
22.
Zurück zum Zitat X.F. Zhang et al., Hydrogen-Induced Effects on the CVD Growth of High-Quality Graphene Structures, Nanoscale, 2013, 5(18), p 8363–8366CrossRef X.F. Zhang et al., Hydrogen-Induced Effects on the CVD Growth of High-Quality Graphene Structures, Nanoscale, 2013, 5(18), p 8363–8366CrossRef
23.
Zurück zum Zitat D.H. Jung et al., Effects of Hydrogen Partial Pressure in the Annealing Process on Graphene Growth, J. Phys. Chem. C, 2014, 118(7), p 3574–3580CrossRef D.H. Jung et al., Effects of Hydrogen Partial Pressure in the Annealing Process on Graphene Growth, J. Phys. Chem. C, 2014, 118(7), p 3574–3580CrossRef
24.
Zurück zum Zitat J. Song, T.Y. Ko, and S. Ryu, Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation, Bull. Korean Chem. Soc., 2010, 31(9), p 2679–2682CrossRef J. Song, T.Y. Ko, and S. Ryu, Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation, Bull. Korean Chem. Soc., 2010, 31(9), p 2679–2682CrossRef
25.
Zurück zum Zitat Z.Z. Sun et al., Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468(7323), p 549–552CrossRef Z.Z. Sun et al., Growth of Graphene from Solid Carbon Sources, Nature, 2010, 468(7323), p 549–552CrossRef
26.
Zurück zum Zitat X.C. Dong et al., Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure, Carbon, 2011, 49(11), p 3672–3678CrossRef X.C. Dong et al., Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure, Carbon, 2011, 49(11), p 3672–3678CrossRef
27.
Zurück zum Zitat J.C. Meyer et al., The Structure of Suspended Graphene Sheets, Nature, 2007, 446(7131), p 60–63CrossRef J.C. Meyer et al., The Structure of Suspended Graphene Sheets, Nature, 2007, 446(7131), p 60–63CrossRef
28.
Zurück zum Zitat E. Widenkvist et al., Mild Sonochemical Exfoliation of Bromine-Intercalated Graphite: A New Route Towards Graphene, J. Phys. D Appl. Phys., 2009, 42, p 112003CrossRef E. Widenkvist et al., Mild Sonochemical Exfoliation of Bromine-Intercalated Graphite: A New Route Towards Graphene, J. Phys. D Appl. Phys., 2009, 42, p 112003CrossRef
29.
Zurück zum Zitat A. Madhankumar et al., EIS Evaluation of Protective Performance and Surface Characterization of Epoxy Coating with Aluminum Nanoparticles After Wet and Dry Corrosion Test, J. Solid State Electrochem., 2012, 16(6), p 2085–2093CrossRef A. Madhankumar et al., EIS Evaluation of Protective Performance and Surface Characterization of Epoxy Coating with Aluminum Nanoparticles After Wet and Dry Corrosion Test, J. Solid State Electrochem., 2012, 16(6), p 2085–2093CrossRef
30.
Zurück zum Zitat S. Akhtar et al., Enhancement of Anticorrosion Property of 304 Stainless Steel Using Silane Coatings, Appl. Surf. Sci., 2018, 440, p 1286–1297CrossRef S. Akhtar et al., Enhancement of Anticorrosion Property of 304 Stainless Steel Using Silane Coatings, Appl. Surf. Sci., 2018, 440, p 1286–1297CrossRef
31.
Zurück zum Zitat A.V. Benedeti et al., Electrochemical Studies of Copper, Copper-Aluminium and Copper-Aluminium-Silver Alloys: Impedance Results in 0.5 M NaCl, Electrochim. Acta, 1995, 40(16), p 2657–2668CrossRef A.V. Benedeti et al., Electrochemical Studies of Copper, Copper-Aluminium and Copper-Aluminium-Silver Alloys: Impedance Results in 0.5 M NaCl, Electrochim. Acta, 1995, 40(16), p 2657–2668CrossRef
32.
Zurück zum Zitat P.G. Pawar et al., Polystyrene Assisted Superhydrophobic Silica Coatings with Surface Protection and Self-Cleaning Approach, Prog. Org. Coat., 2017, 105, p 235–244CrossRef P.G. Pawar et al., Polystyrene Assisted Superhydrophobic Silica Coatings with Surface Protection and Self-Cleaning Approach, Prog. Org. Coat., 2017, 105, p 235–244CrossRef
33.
Zurück zum Zitat A.Y. Adesina, Z.M. Gasem, and A.M. Kumar, Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1 M HCl and 3.5 pct NaCl Solutions, Metall. Mater. Trans. B, 2017, 48(2), p 1321–1332CrossRef A.Y. Adesina, Z.M. Gasem, and A.M. Kumar, Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1 M HCl and 3.5 pct NaCl Solutions, Metall. Mater. Trans. B, 2017, 48(2), p 1321–1332CrossRef
34.
Zurück zum Zitat A.M. Kumar et al., Fabrication of Nitrogen Doped Graphene Oxide Coatings: Experimental and Theoretical Approach for Surface Protection, RSC Adv., 2015, 5(25), p 19264–19272CrossRef A.M. Kumar et al., Fabrication of Nitrogen Doped Graphene Oxide Coatings: Experimental and Theoretical Approach for Surface Protection, RSC Adv., 2015, 5(25), p 19264–19272CrossRef
35.
Zurück zum Zitat A.M. Kumar et al., Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect, J. Mater. Eng. Perform., 2018, 27(5), p 2306–2316CrossRef A.M. Kumar et al., Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect, J. Mater. Eng. Perform., 2018, 27(5), p 2306–2316CrossRef
36.
Zurück zum Zitat S.D. Costa et al., Resonant Raman Spectroscopy of Graphene Grown on Copper Substrates, Solid State Commun., 2012, 152(15), p 1317–1320CrossRef S.D. Costa et al., Resonant Raman Spectroscopy of Graphene Grown on Copper Substrates, Solid State Commun., 2012, 152(15), p 1317–1320CrossRef
Metadaten
Titel
Few-Layers Graphene Film and Copper Surface Morphology for Improved Corrosion Protection of Copper
verfasst von
Sultan Akhtar
Tahar Laoui
Ahmed Ibrahim
A. Madhan Kumar
Junaid Ahmed
Ihsan-ul-Haq Toor
Publikationsdatum
21.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04268-9

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Engineering and Performance 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.