Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2019

14.11.2019

Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression

verfasst von: Hongming Zhang, Mingqian Yang, Yuan Xu, Cheng Sun, Gang Chen, Fei Han

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Ti-22Al-25Nb alloy was fabricated from prealloyed powders by hot isostatic pressing for 2 h at a temperature of 1050 °C and pressure of 100 MPa. The hot deformation behavior of the Ti-22Al-25Nb alloy was characterized by isothermal compression testing at deformation temperatures between 900 and 1060 °C and strain rates between 0.001 and 1 s−1. Based on the true stress–strain curves, a constitutive equation was constructed to describe the flow stress as a function of the strain rate and deformation temperature. Three-dimensional (3D) processing maps were developed based on dynamic material model theory using the stress flow data to identify the instability and optimization regions of the hot processing parameters. The results show that the flow stress decreases with increasing deformation temperature and decreasing strain rate, and the softening mechanisms are different under different deformation conditions. The apparent activation energies in the (α2 + β/B2 + O) and (α2 + B2) phase regions are calculated to be 865.177 and 590.661 kJ/mol, respectively, which suggests that the hot isostatic pressed (HIPed) Ti-22Al-25Nb alloy requires a high hot deformation activation energy. Combined with microstructural observations, the optimal processing domains are determined to be a temperature range of 1030-1060 °C and strain rate range of 0.01-0.1 s−1 in the α2 + B2 phase region. Moreover, the results indicate that adiabatic shear bands and severe inhomogeneous deformation cause flow instability at lower temperatures (900-1005 °C) and higher strain rates (> 0.1 s−1).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele, Phase Stability and Ordering Behaviour of the O Phase in Ti-Al-Nb Alloys, Intermetallics, 1995, 3(3), p 187–199 K. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele, Phase Stability and Ordering Behaviour of the O Phase in Ti-Al-Nb Alloys, Intermetallics, 1995, 3(3), p 187–199
2.
Zurück zum Zitat C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2305–2323 C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2305–2323
3.
Zurück zum Zitat D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36(4), p 871–882 D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36(4), p 871–882
4.
Zurück zum Zitat F.C. Dary and T.M. Pollock, Effects of High Temperature Air and Vacuum Exposures on the Room Temperature Tensile Behavior of the (O + B2) Titanium Aluminide Ti-22Al-23Nb, Mater. Sci. Eng. A, 1996, 208(2), p 188–202 F.C. Dary and T.M. Pollock, Effects of High Temperature Air and Vacuum Exposures on the Room Temperature Tensile Behavior of the (O + B2) Titanium Aluminide Ti-22Al-23Nb, Mater. Sci. Eng. A, 1996, 208(2), p 188–202
5.
Zurück zum Zitat M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9(3), p 265–272 M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9(3), p 265–272
6.
Zurück zum Zitat C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B2 Alloy, Intermetallics, 2006, 14(4), p 412–422 C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B2 Alloy, Intermetallics, 2006, 14(4), p 412–422
7.
Zurück zum Zitat J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299(1–2), p 75–80 J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299(1–2), p 75–80
8.
Zurück zum Zitat M. Hagiwara, S. Emura, A. Araoka, S.J. Yang, and S.W. Nam, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Trans. A, 2004, 35(7), p 2161–2170 M. Hagiwara, S. Emura, A. Araoka, S.J. Yang, and S.W. Nam, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Trans. A, 2004, 35(7), p 2161–2170
9.
Zurück zum Zitat L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13(9), p 920–924 L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13(9), p 920–924
10.
Zurück zum Zitat C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and Its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2014, 611, p 320–325 C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and Its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2014, 611, p 320–325
11.
Zurück zum Zitat S.V. Kamat, A.K. Gogia, and D. Banerjee, Effect of Alloying Elements and Heat Treatment on the Fracture Toughness of Ti-Al-Nb Alloys, Acta Mater., 1998, 46(1), p 239–251 S.V. Kamat, A.K. Gogia, and D. Banerjee, Effect of Alloying Elements and Heat Treatment on the Fracture Toughness of Ti-Al-Nb Alloys, Acta Mater., 1998, 46(1), p 239–251
12.
Zurück zum Zitat P. Lin, Z.B. He, S.J. Yuan, and J. Shen, Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 556, p 617–624 P. Lin, Z.B. He, S.J. Yuan, and J. Shen, Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 556, p 617–624
13.
Zurück zum Zitat C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O + BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129 C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O + BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129
14.
Zurück zum Zitat P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, IV, Review A P/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35(13), p 3169–3179 P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, IV, Review A P/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35(13), p 3169–3179
15.
Zurück zum Zitat J.B. Jia, K.F. Zhang, and S.S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98 J.B. Jia, K.F. Zhang, and S.S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98
16.
Zurück zum Zitat Y.X. Wang, K.F. Zhang, and B.Y. Li, Microstructure and High Temperature Tensile Properties of Ti-22Al-25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mater. Sci. Eng. A, 2014, 608, p 229–233 Y.X. Wang, K.F. Zhang, and B.Y. Li, Microstructure and High Temperature Tensile Properties of Ti-22Al-25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mater. Sci. Eng. A, 2014, 608, p 229–233
17.
Zurück zum Zitat K.H. Sim, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433 K.H. Sim, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433
18.
Zurück zum Zitat J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2015, 31(12), p 1251–1257 J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2015, 31(12), p 1251–1257
19.
Zurück zum Zitat C. Chao, S. Bo, P. Xue, Q. Wei, J.M. Wu, L. Wei, and Y. Shi, Effect of Hot Isostatic Pressing Procedure on Performance of Ti6Al4V: Surface Qualities, Microstructure and Mechanical Properties, J. Alloys Compd., 2016, 686, p 55–63 C. Chao, S. Bo, P. Xue, Q. Wei, J.M. Wu, L. Wei, and Y. Shi, Effect of Hot Isostatic Pressing Procedure on Performance of Ti6Al4V: Surface Qualities, Microstructure and Mechanical Properties, J. Alloys Compd., 2016, 686, p 55–63
20.
Zurück zum Zitat X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7 X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7
21.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258 Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258
22.
Zurück zum Zitat J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti-22Al-25Nb Using Processing Map, Rare Met., 2016, 35(1), p 118–126 J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti-22Al-25Nb Using Processing Map, Rare Met., 2016, 35(1), p 118–126
23.
Zurück zum Zitat J.B. Jia, K.F. Zhang, L.M. Liu, and F.Y. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti-22Al-25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221 J.B. Jia, K.F. Zhang, L.M. Liu, and F.Y. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti-22Al-25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221
24.
Zurück zum Zitat S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Metals, 2018, 8(6), p 382 S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Metals, 2018, 8(6), p 382
25.
Zurück zum Zitat A. Mohamadizadeh, A. Zarei-Hanzaki, H. Abedi, S. Mehtonen, and D. Porter, Hot Deformation Characterization of Duplex Low-Density Steel Through 3D Processing Map Development, Mater. Charact., 2015, 107, p 293–301 A. Mohamadizadeh, A. Zarei-Hanzaki, H. Abedi, S. Mehtonen, and D. Porter, Hot Deformation Characterization of Duplex Low-Density Steel Through 3D Processing Map Development, Mater. Charact., 2015, 107, p 293–301
26.
Zurück zum Zitat J. Liu, Z. Cui, and C. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Proc. Technol., 2008, 205(1–3), p 497–505 J. Liu, Z. Cui, and C. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Proc. Technol., 2008, 205(1–3), p 497–505
27.
Zurück zum Zitat G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193 G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193
28.
Zurück zum Zitat A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6(7–8), p 741–748 A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6(7–8), p 741–748
29.
Zurück zum Zitat J. Zhang, J. Wu, Y. Luo, X. Mao, D. Guo, S. Zhao, and F. Yang, Hot Deformation Mechanisms of Ti-22Al-25Nb Orthorhombic Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 973–980 J. Zhang, J. Wu, Y. Luo, X. Mao, D. Guo, S. Zhao, and F. Yang, Hot Deformation Mechanisms of Ti-22Al-25Nb Orthorhombic Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 973–980
30.
Zurück zum Zitat W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, Tensile Behavior of a Ti–22Al–25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176–184 W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, Tensile Behavior of a Ti–22Al–25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176–184
31.
Zurück zum Zitat G. Chen, X.S. Chang, J.X. Zhang, J. Yu, C. Sun, Q. Chen, and Z.D. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting, Met. Mater. Int. 2019. https://doi.org/10.1007/s12540-019-00396-y G. Chen, X.S. Chang, J.X. Zhang, J. Yu, C. Sun, Q. Chen, and Z.D. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting, Met. Mater. Int. 2019. https://​doi.​org/​10.​1007/​s12540-019-00396-y
32.
Zurück zum Zitat Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24 Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24
33.
Zurück zum Zitat J. Jia, K. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy During Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639 J. Jia, K. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy During Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639
34.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759 Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759
35.
Zurück zum Zitat J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of a New Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952 J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of a New Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952
36.
Zurück zum Zitat A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui, Hot Working of Ti-6Al-3Mo-2Zr-0.3Si Alloy with Lamellar α + β Starting Structure Using Processing Map, Mater. Des., 2009, 30(5), p 1625–1631 A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui, Hot Working of Ti-6Al-3Mo-2Zr-0.3Si Alloy with Lamellar α + β Starting Structure Using Processing Map, Mater. Des., 2009, 30(5), p 1625–1631
37.
Zurück zum Zitat I. Philippart and H.J. Rack, High Temperature Dynamic Yielding in Metastable Ti-6.8Mo-4.5F-1.5Al, Mater. Sci. Eng. A, 1998, 243(1–2), p 196–200 I. Philippart and H.J. Rack, High Temperature Dynamic Yielding in Metastable Ti-6.8Mo-4.5F-1.5Al, Mater. Sci. Eng. A, 1998, 243(1–2), p 196–200
38.
Zurück zum Zitat W.D. Zeng, Y. Shu, X.M. Zhang, Y.G. Zhou, Y.Q. Zhao, H. Wu, Y. Dai, J. Yang, and L. Zhou, Hot Workability and Microstructure Evolution of Highly β Stabilised Ti-25V-15Cr-0.3Si alloy, Mater. Sci. Technol., 2008, 24(10), p 1222–1229 W.D. Zeng, Y. Shu, X.M. Zhang, Y.G. Zhou, Y.Q. Zhao, H. Wu, Y. Dai, J. Yang, and L. Zhou, Hot Workability and Microstructure Evolution of Highly β Stabilised Ti-25V-15Cr-0.3Si alloy, Mater. Sci. Technol., 2008, 24(10), p 1222–1229
39.
Zurück zum Zitat C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Mater., 1966, 14(9), p 1136–1138 C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Mater., 1966, 14(9), p 1136–1138
40.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32 C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32
41.
Zurück zum Zitat G.Z. Quan, L. Zhao, T. Chen, Y. Wang, Y.P. Mao, W.Q. Lv, and J. Zhou, Identification for the Optimal Working Parameters of As-Extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature, Mater. Sci. Eng. A, 2012, 538, p 364–373 G.Z. Quan, L. Zhao, T. Chen, Y. Wang, Y.P. Mao, W.Q. Lv, and J. Zhou, Identification for the Optimal Working Parameters of As-Extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature, Mater. Sci. Eng. A, 2012, 538, p 364–373
42.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88 Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88
43.
Zurück zum Zitat C.M. Sellars and W.J. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63(9), p 731–745 C.M. Sellars and W.J. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63(9), p 731–745
44.
Zurück zum Zitat T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325(1–2), p 112–125 T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325(1–2), p 112–125
45.
Zurück zum Zitat Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445 Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445
46.
Zurück zum Zitat C. Zhang and K. Zhang, Superplasticity of a γ-TiAl Alloy and Its Microstructure and Cavity Evolution in Deformation, J. Alloys Compd., 2010, 492, p 236–240 C. Zhang and K. Zhang, Superplasticity of a γ-TiAl Alloy and Its Microstructure and Cavity Evolution in Deformation, J. Alloys Compd., 2010, 492, p 236–240
Metadaten
Titel
Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression
verfasst von
Hongming Zhang
Mingqian Yang
Yuan Xu
Cheng Sun
Gang Chen
Fei Han
Publikationsdatum
14.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04453-w

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Engineering and Performance 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.