Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2019

16.01.2019

Structural, Mechanical, and Electrical Behavior of Ceramic-Reinforced Copper Metal Matrix Hybrid Composites

verfasst von: Manvandra Kumar Singh, Rakesh Kumar Gautam

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents the structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites developed by stir-casting technique. Commercial copper was used as matrix, and different weight percentages of boron carbide (B4C), with constant weight percentage of tungsten carbide, boron nitride, and chromium, were used as reinforcements. Copper hybrid composites were characterized by high-resolution x-ray diffraction, optical microscope, scanning electron microscope, energy-dispersive analysis of x-ray, high-resolution scanning electron microscope, and Fourier transform infrared spectroscopy. Density, hardness, tensile strength, compressive strength, and electrical conductivity were also analyzed. These hybrid composites show improved mechanical properties such as hardness, tensile strength, and compressive strength, while relatively lower density and electrical conductivity were observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Rajkovic, D. Bozic, J. Stasic, H. Wang, and M.T. Jovanovic, Processing, Characterization and Properties of Copper-Based Composites Strengthened by Low Amount of Alumina Particles, Powder Technol., 2014, 268, p 392–400CrossRef V. Rajkovic, D. Bozic, J. Stasic, H. Wang, and M.T. Jovanovic, Processing, Characterization and Properties of Copper-Based Composites Strengthened by Low Amount of Alumina Particles, Powder Technol., 2014, 268, p 392–400CrossRef
2.
Zurück zum Zitat M.T. Jovanović and V. Rajković, High Electrical Conductivity Cu-Based Alloys, Part I, J. Metall. MJoM, 2009, 15, p 125–133 M.T. Jovanović and V. Rajković, High Electrical Conductivity Cu-Based Alloys, Part I, J. Metall. MJoM, 2009, 15, p 125–133
3.
Zurück zum Zitat S.F. Moustafa, Z.A. Hamid, and A.M.A. Elhay, Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique, Mater. Lett., 2002, 53, p 244–249CrossRef S.F. Moustafa, Z.A. Hamid, and A.M.A. Elhay, Copper Matrix SiC and Al2O3 Particulate Composites by Powder Metallurgy Technique, Mater. Lett., 2002, 53, p 244–249CrossRef
4.
Zurück zum Zitat D.Y. Ying and D.L. Zhang, Processing of Cu-Al2O3 Metal Matrix Nanocomposites Materials by Using High Energy Ball Milling, Mater. Sci. Eng. A, 2000, 286, p 152–156CrossRef D.Y. Ying and D.L. Zhang, Processing of Cu-Al2O3 Metal Matrix Nanocomposites Materials by Using High Energy Ball Milling, Mater. Sci. Eng. A, 2000, 286, p 152–156CrossRef
5.
Zurück zum Zitat S.J. Hwang and J.H. Lee, Mechanochemical Synthesis of Cu-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2005, 405, p 140–146CrossRef S.J. Hwang and J.H. Lee, Mechanochemical Synthesis of Cu-Al2O3 Nanocomposites, Mater. Sci. Eng., A, 2005, 405, p 140–146CrossRef
6.
Zurück zum Zitat D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540CrossRef D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540CrossRef
7.
Zurück zum Zitat J.M. Torralba, C. Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p 203–206CrossRef J.M. Torralba, C. Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133(1–2), p 203–206CrossRef
8.
Zurück zum Zitat M.A. Dorri, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, Functional Metal Matrix Composites: Self-Lubricating, Self-Healing, and Nanocomposites-an Outlook, JOM, 2014, 66(6), p 872–881CrossRef M.A. Dorri, B.F. Schultz, J. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, Functional Metal Matrix Composites: Self-Lubricating, Self-Healing, and Nanocomposites-an Outlook, JOM, 2014, 66(6), p 872–881CrossRef
9.
Zurück zum Zitat P.K. Rohatgi, K.M. Tabandeh, E. Omrani, M.R. Lovell, P.L. Menezes, Tribology of Metal Matrix Composites. Tribology for Scientists and Engineers. Springer, New York, 2013, p 233–268. P.K. Rohatgi, K.M. Tabandeh, E. Omrani, M.R. Lovell, P.L. Menezes, Tribology of Metal Matrix Composites. Tribology for Scientists and Engineers. Springer, New York, 2013, p 233–268.
10.
Zurück zum Zitat H. Hu, Squeeze Casting of Magnesium Alloys and Their Composites, J. Mater. Sci., 1998, 33, p 1579–1589CrossRef H. Hu, Squeeze Casting of Magnesium Alloys and Their Composites, J. Mater. Sci., 1998, 33, p 1579–1589CrossRef
11.
Zurück zum Zitat Z.Y. Hai and Y.L. Xing, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171CrossRef Z.Y. Hai and Y.L. Xing, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171CrossRef
12.
Zurück zum Zitat A. Banerji, H. Hu, and A.T. Alpas, Sliding Wear Mechanisms of Magnesium Composites AM60 Reinforced with Al2O3 Fibres Under Ultra-Mild Wear Conditions, Wear, 2013, 301(1–2), p 626–635CrossRef A. Banerji, H. Hu, and A.T. Alpas, Sliding Wear Mechanisms of Magnesium Composites AM60 Reinforced with Al2O3 Fibres Under Ultra-Mild Wear Conditions, Wear, 2013, 301(1–2), p 626–635CrossRef
13.
Zurück zum Zitat T. Rajmohan, K. Palanikumar, and M. Kathirvel, Optimization of Machining Parameters in Drilling Hybrid Aluminium Metal Matrix Composites, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1286–1297CrossRef T. Rajmohan, K. Palanikumar, and M. Kathirvel, Optimization of Machining Parameters in Drilling Hybrid Aluminium Metal Matrix Composites, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1286–1297CrossRef
14.
Zurück zum Zitat Y.Z. Zhan and G.D. Zhang, The Role of Graphite Particles in the High Temperature Wear of Copper Hybrid Composites Against Steel, Mater. Des., 2006, 27, p 79–84CrossRef Y.Z. Zhan and G.D. Zhang, The Role of Graphite Particles in the High Temperature Wear of Copper Hybrid Composites Against Steel, Mater. Des., 2006, 27, p 79–84CrossRef
15.
Zurück zum Zitat A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene: A Review, Compos. Part B, 2015, 77, p 402–420CrossRef A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene: A Review, Compos. Part B, 2015, 77, p 402–420CrossRef
16.
Zurück zum Zitat P.K. Rohatgi, N. Gupta, and S. Alaraj, Thermal Expansion of Aluminum Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique, J. Compos. Mater., 2006, 40, p 1163–1174CrossRef P.K. Rohatgi, N. Gupta, and S. Alaraj, Thermal Expansion of Aluminum Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique, J. Compos. Mater., 2006, 40, p 1163–1174CrossRef
17.
Zurück zum Zitat K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai et al., Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite, Mater. Sci. Eng., A, 2008, 490, p 235–241CrossRef K. Sukumaran, K.K. Ravikumar, S.G.K. Pillai, T.P.D. Rajan, M. Ravi, R.M. Pillai et al., Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite, Mater. Sci. Eng., A, 2008, 490, p 235–241CrossRef
18.
Zurück zum Zitat S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, and W.M. Zhu, Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressure Less Infiltration Technique, Compos. Part A, 2007, 38(2), p 301–306CrossRef S.M. Zhou, X.B. Zhang, Z.P. Ding, C.Y. Min, G.L. Xu, and W.M. Zhu, Fabrication and Tribological Properties of Carbon Nanotubes Reinforced Al Composites Prepared by Pressure Less Infiltration Technique, Compos. Part A, 2007, 38(2), p 301–306CrossRef
19.
Zurück zum Zitat B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi, Microstructure and Hardness of Al2O3 Nanoparticles Reinforced Al-Mg Composites Fabricated by Reactive Wetting and Stir Mixing, Mater. Sci. Eng., A, 2011, 530, p 87–97CrossRef B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi, Microstructure and Hardness of Al2O3 Nanoparticles Reinforced Al-Mg Composites Fabricated by Reactive Wetting and Stir Mixing, Mater. Sci. Eng., A, 2011, 530, p 87–97CrossRef
20.
Zurück zum Zitat T. Wada, G.T. Eldis, D.L. Albright, Composite Materials Having a Matrix of Magnesium or Magnesium Alloy Reinforced With Dis- continuous Silicon Carbide Particles, U. S. Patent No. 4, 657, 065. 14 April, 1987 T. Wada, G.T. Eldis, D.L. Albright, Composite Materials Having a Matrix of Magnesium or Magnesium Alloy Reinforced With Dis- continuous Silicon Carbide Particles, U. S. Patent No. 4, 657, 065. 14 April, 1987
21.
Zurück zum Zitat J. Lo, R. Santos, Magnesium Matrix Composites for Elevated Temperature Applications, SAE World Congress, SAE, Detroit, MI, (2007) 2007-01-1028 J. Lo, R. Santos, Magnesium Matrix Composites for Elevated Temperature Applications, SAE World Congress, SAE, Detroit, MI, (2007) 2007-01-1028
22.
Zurück zum Zitat J. Schröder and K.U. Kainer, Using Hybrid Reinforcement Methodology to Enhance Overall Mechanical Performance of Pure Magnesium, Mater. Sci. Eng., A, 1991, 135, p 33–36CrossRef J. Schröder and K.U. Kainer, Using Hybrid Reinforcement Methodology to Enhance Overall Mechanical Performance of Pure Magnesium, Mater. Sci. Eng., A, 1991, 135, p 33–36CrossRef
23.
Zurück zum Zitat R.K. Gautam, S. Ray, S.C. Sharma, S.C. Jain, and R. Tyagi, Dry Sliding Wear Behavior of Hot Forged and Annealed Cu–Cr–Graphite In-Situ Composites, Wear, 2011, 271, p 658–664CrossRef R.K. Gautam, S. Ray, S.C. Sharma, S.C. Jain, and R. Tyagi, Dry Sliding Wear Behavior of Hot Forged and Annealed Cu–Cr–Graphite In-Situ Composites, Wear, 2011, 271, p 658–664CrossRef
24.
Zurück zum Zitat X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276CrossRef X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276CrossRef
25.
Zurück zum Zitat T. Rajmohan, K. Palanikumar, and S. Arumugam, Synthesis and Characterization of Sintered Hybrid Aluminium Matrix Composites Reinforced with Nanocopper Oxide Particles and Microsilicon Carbide Particles, Compos. Part B: Eng., 2014, 59, p 43–49CrossRef T. Rajmohan, K. Palanikumar, and S. Arumugam, Synthesis and Characterization of Sintered Hybrid Aluminium Matrix Composites Reinforced with Nanocopper Oxide Particles and Microsilicon Carbide Particles, Compos. Part B: Eng., 2014, 59, p 43–49CrossRef
26.
Zurück zum Zitat A.K.M.A. Iqbal, S. Chen, Y. Arai, and W. Araki, Study on Stress Evolution in SiC Particles During Crack Propagation in Cast Hybrid Metal Matrix Composites Using Raman Spectroscopy, Eng. Fail. Anal., 2015, 52, p 109–115CrossRef A.K.M.A. Iqbal, S. Chen, Y. Arai, and W. Araki, Study on Stress Evolution in SiC Particles During Crack Propagation in Cast Hybrid Metal Matrix Composites Using Raman Spectroscopy, Eng. Fail. Anal., 2015, 52, p 109–115CrossRef
27.
Zurück zum Zitat M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960CrossRef M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960CrossRef
28.
Zurück zum Zitat I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, and J.P. Davim, Microstructure and Wear Characterization of Rice Husk Ash Reinforced Copper Matrix Composites Prepared Using Friction Stir Processing, J. Alloys Compd., 2017, 718, p 150–160CrossRef I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, and J.P. Davim, Microstructure and Wear Characterization of Rice Husk Ash Reinforced Copper Matrix Composites Prepared Using Friction Stir Processing, J. Alloys Compd., 2017, 718, p 150–160CrossRef
29.
Zurück zum Zitat C.P. Samal, J.S. Parihar, and D. Chaira, The Effect of Milling and Sintering Techniques on Mechanical Properties of Cu-Graphite Metal Matrix Composite Prepared by Powder Metallurgy, J. Alloy. Compd., 2013, 569, p 95–101CrossRef C.P. Samal, J.S. Parihar, and D. Chaira, The Effect of Milling and Sintering Techniques on Mechanical Properties of Cu-Graphite Metal Matrix Composite Prepared by Powder Metallurgy, J. Alloy. Compd., 2013, 569, p 95–101CrossRef
30.
Zurück zum Zitat M. Hasmuddin, P. Singh, P. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, and M.A. Wahab, Structural, Spectroscopic, Optical, Dielectric and Mechanical Study of Pure and l-Proline Doped Ammonium Di-Hydrogen Phosphate Single Crystals, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 123, p 376–384CrossRef M. Hasmuddin, P. Singh, P. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, and M.A. Wahab, Structural, Spectroscopic, Optical, Dielectric and Mechanical Study of Pure and l-Proline Doped Ammonium Di-Hydrogen Phosphate Single Crystals, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 123, p 376–384CrossRef
31.
Zurück zum Zitat T. Ananthi, S.M. Delphine, M.M. Freeda, R.K. Priya, and A.W. Almusallam, Growth and Characterization of Doped ADP Crystal, Rec. Res. Sci. Technol., 2011, 3(1), p 32–40 T. Ananthi, S.M. Delphine, M.M. Freeda, R.K. Priya, and A.W. Almusallam, Growth and Characterization of Doped ADP Crystal, Rec. Res. Sci. Technol., 2011, 3(1), p 32–40
32.
Zurück zum Zitat D. Xu and D. Xue, Chemical Bond Analysis of the Crystal Growth of KDP and ADP, J. Cryst. Growth, 2006, 286, p 108–113CrossRef D. Xu and D. Xue, Chemical Bond Analysis of the Crystal Growth of KDP and ADP, J. Cryst. Growth, 2006, 286, p 108–113CrossRef
33.
Zurück zum Zitat G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1, p 22–31CrossRef G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1, p 22–31CrossRef
34.
Zurück zum Zitat C. Rath, P. Mallick, D. Pandey, D. Sa, A. Banerjee, and N.C. Mishra, Anomalous X-ray Diffraction Peak Broadening and Lattice Strains in Zn1 − xCoxO Dilute Magnetic Semiconductors, J. Phys.: Condens. Matter, 2009, 21, p 075801 C. Rath, P. Mallick, D. Pandey, D. Sa, A. Banerjee, and N.C. Mishra, Anomalous X-ray Diffraction Peak Broadening and Lattice Strains in Zn1 − xCoxO Dilute Magnetic Semiconductors, J. Phys.: Condens. Matter, 2009, 21, p 075801
35.
36.
Zurück zum Zitat J.I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Plenum Press, New York, 2003CrossRef J.I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Plenum Press, New York, 2003CrossRef
37.
Zurück zum Zitat J.C. Russ, Fundamentals of Energy Dispersive X-ray Analysis, Butterworths, London, 1984 J.C. Russ, Fundamentals of Energy Dispersive X-ray Analysis, Butterworths, London, 1984
38.
Zurück zum Zitat V.D. Scott and G. Love, Quantitative Electron Probe Microanalysis, 2nd ed., Ellis Horwood, Chichester, 1994 V.D. Scott and G. Love, Quantitative Electron Probe Microanalysis, 2nd ed., Ellis Horwood, Chichester, 1994
39.
Zurück zum Zitat B.B. Straumal, S.A. Polyakov, E. Bischoff, W. Gust, and E.J. Mittemeijer, Faceting of Σ3 and Σ9 Grain Boundaries in Copper, Interface Sci., 2001, 9, p 287–292CrossRef B.B. Straumal, S.A. Polyakov, E. Bischoff, W. Gust, and E.J. Mittemeijer, Faceting of Σ3 and Σ9 Grain Boundaries in Copper, Interface Sci., 2001, 9, p 287–292CrossRef
40.
Zurück zum Zitat B.B. Straumal, S.A. Polyakov, and E.J. Mittemeijer, Temperature Influence on the Faceting of Σ3 and Σ9 Grain Boundaries in Cu, Acta Mater., 2006, 54, p 167–172CrossRef B.B. Straumal, S.A. Polyakov, and E.J. Mittemeijer, Temperature Influence on the Faceting of Σ3 and Σ9 Grain Boundaries in Cu, Acta Mater., 2006, 54, p 167–172CrossRef
41.
Zurück zum Zitat T.R. Prabhu, V.K. Varma, and S. Vedantam, Effect of SiC Volume Fraction and Size on Dry Sliding Wear of Fe/SiC/Graphite Hybrid Composites for High Sliding Speed Applications, Wear, 2014, 309, p 1–10CrossRef T.R. Prabhu, V.K. Varma, and S. Vedantam, Effect of SiC Volume Fraction and Size on Dry Sliding Wear of Fe/SiC/Graphite Hybrid Composites for High Sliding Speed Applications, Wear, 2014, 309, p 1–10CrossRef
42.
Zurück zum Zitat S. Wang, S. Zhu, J. Cheng, Z. Qiao, J. Yang, and W. Liu, Microstructural, Mechanical and Tribological Properties of Al Matrix Composites Reinforced with Cu Coated Ti3AlC2, J. Alloys Compd., 2017, 690, p 612–620CrossRef S. Wang, S. Zhu, J. Cheng, Z. Qiao, J. Yang, and W. Liu, Microstructural, Mechanical and Tribological Properties of Al Matrix Composites Reinforced with Cu Coated Ti3AlC2, J. Alloys Compd., 2017, 690, p 612–620CrossRef
43.
Zurück zum Zitat L. Yuan, J. Han, J. Liu, and Z. Jiang, Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced with In-Situ AlB2 Particles, Tribol. Int., 2016, 98, p 41–47CrossRef L. Yuan, J. Han, J. Liu, and Z. Jiang, Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced with In-Situ AlB2 Particles, Tribol. Int., 2016, 98, p 41–47CrossRef
44.
Zurück zum Zitat K. Ravi Kumar, K. Kiran, and V.S. Sreebalaji, Micro Structural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide, J. Alloys Compd., 2017, 723, p 795–801CrossRef K. Ravi Kumar, K. Kiran, and V.S. Sreebalaji, Micro Structural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide, J. Alloys Compd., 2017, 723, p 795–801CrossRef
45.
Zurück zum Zitat X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276CrossRef X. Zhang, Q. Zhang, and H. Hu, Tensile Behaviour and Microstructure of Magnesium AM60-Based Hybrid Composite Containing Al2O3 Fibres and Particles, Mater. Sci. Eng., A, 2014, 607, p 269–276CrossRef
46.
Zurück zum Zitat C.S. Ramesh, R.N. Ahmed, M.A. Mujeebu, and M.Z. Abdullah, Fabrication and Study on Tribological Characteristics of Cast Copper–TiO2–Boric Acid Hybrid Composites, Mater. Des., 2009, 30, p 1632–1637CrossRef C.S. Ramesh, R.N. Ahmed, M.A. Mujeebu, and M.Z. Abdullah, Fabrication and Study on Tribological Characteristics of Cast Copper–TiO2–Boric Acid Hybrid Composites, Mater. Des., 2009, 30, p 1632–1637CrossRef
47.
Zurück zum Zitat P. Sharma, S. Sharma, and D. Khanduja, A Study on Microstructure of Aluminium Matrix Composites, J. Asian Ceram. Soc., 2015, 3(3), p 240–244CrossRef P. Sharma, S. Sharma, and D. Khanduja, A Study on Microstructure of Aluminium Matrix Composites, J. Asian Ceram. Soc., 2015, 3(3), p 240–244CrossRef
48.
Zurück zum Zitat P. Jha, R.K. Gautam, R. Tyagi, and D. Kumar, Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites, J. Mater. Eng. Perform., 2016, 25, p 4210–4218CrossRef P. Jha, R.K. Gautam, R. Tyagi, and D. Kumar, Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites, J. Mater. Eng. Perform., 2016, 25, p 4210–4218CrossRef
49.
Zurück zum Zitat M.S. Bhagyashekar, Wear characteristic of HSS cutting tool during turning operation of cast aluminium alloy-SiC/graphite composite. M.Sc., Eng. Thesis. University of Mysore (1997) M.S. Bhagyashekar, Wear characteristic of HSS cutting tool during turning operation of cast aluminium alloy-SiC/graphite composite. M.Sc., Eng. Thesis. University of Mysore (1997)
50.
Zurück zum Zitat N. Chawla and Y.L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370CrossRef N. Chawla and Y.L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370CrossRef
51.
Zurück zum Zitat Z. Zhang, R. Tremblay, and D. Dube, Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys, Mater. Sci. Eng., A, 2004, 385, p 286–291CrossRef Z. Zhang, R. Tremblay, and D. Dube, Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys, Mater. Sci. Eng., A, 2004, 385, p 286–291CrossRef
52.
Zurück zum Zitat Q.B. Nguyen and M. Gupta, Enhancing Compressive Response of AZ31B Magnesium Alloy Using Alumina Nanoparticulates, Compos. Sci. Technol., 2008, 68, p 2185–2192CrossRef Q.B. Nguyen and M. Gupta, Enhancing Compressive Response of AZ31B Magnesium Alloy Using Alumina Nanoparticulates, Compos. Sci. Technol., 2008, 68, p 2185–2192CrossRef
53.
Zurück zum Zitat S.F. Hassan and M. Gupta, Development of High Strength Magnesium Copper Based Hybrid Composites with Enhanced Tensile Properties, Mater. Sci. Technol., 2003, 19, p 253–259CrossRef S.F. Hassan and M. Gupta, Development of High Strength Magnesium Copper Based Hybrid Composites with Enhanced Tensile Properties, Mater. Sci. Technol., 2003, 19, p 253–259CrossRef
54.
Zurück zum Zitat Q.B. Nguyen and M. Gupta, Microstructure and Mechanical Characteristics of AZ31B/Al2O3 Nanocomposite with Addition of Ca, Compos. Mater., 2009, 43, p 5–17CrossRef Q.B. Nguyen and M. Gupta, Microstructure and Mechanical Characteristics of AZ31B/Al2O3 Nanocomposite with Addition of Ca, Compos. Mater., 2009, 43, p 5–17CrossRef
55.
Zurück zum Zitat Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista, Strengthening in a WE54 Magnesium Alloy Containing SiC Particles, Mater. Sci. Eng., A, 2007, 462, p 225–229CrossRef Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista, Strengthening in a WE54 Magnesium Alloy Containing SiC Particles, Mater. Sci. Eng., A, 2007, 462, p 225–229CrossRef
56.
Zurück zum Zitat M.J. Shen, X.J. Wang, T. Ying, M.F. Zhang, and K. Wu, Microstructure and Tensile Properties of AZ31B Alloy and AZ31B-SiCp Deformed Through a Multi-Step Process, J. Mater. Eng. Perform., 2016, 25, p 4608–4616CrossRef M.J. Shen, X.J. Wang, T. Ying, M.F. Zhang, and K. Wu, Microstructure and Tensile Properties of AZ31B Alloy and AZ31B-SiCp Deformed Through a Multi-Step Process, J. Mater. Eng. Perform., 2016, 25, p 4608–4616CrossRef
57.
Zurück zum Zitat V.A. Nadkarni and E.J. Synk, Metals Handbook, Powder Metallurgy ASM, Metals Park, 1984 V.A. Nadkarni and E.J. Synk, Metals Handbook, Powder Metallurgy ASM, Metals Park, 1984
58.
Zurück zum Zitat J.N. Grant, A. Lee, M. Lou, Multiple Hardening of Mechanisms for High Strength, High Temperature, High Conductivity Copper Base Alloys, Proceedings of Conference on High Conductivity Copper and Aluminium Alloys, Warrendale, PA, USA, The Metallurgical Society of AIME, (1984) p 103–111. J.N. Grant, A. Lee, M. Lou, Multiple Hardening of Mechanisms for High Strength, High Temperature, High Conductivity Copper Base Alloys, Proceedings of Conference on High Conductivity Copper and Aluminium Alloys, Warrendale, PA, USA, The Metallurgical Society of AIME, (1984) p 103–111.
59.
Zurück zum Zitat C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, and D.K. Agrawal, An Investigation on the Effect of Sintering Mode on Various Properties of Copper-Graphene Metal Matrix Composite, Adv. Powder Technol., 2017, 28, p 1760–1768CrossRef C. Ayyappadas, A. Muthuchamy, A.R. Annamalai, and D.K. Agrawal, An Investigation on the Effect of Sintering Mode on Various Properties of Copper-Graphene Metal Matrix Composite, Adv. Powder Technol., 2017, 28, p 1760–1768CrossRef
Metadaten
Titel
Structural, Mechanical, and Electrical Behavior of Ceramic-Reinforced Copper Metal Matrix Hybrid Composites
verfasst von
Manvandra Kumar Singh
Rakesh Kumar Gautam
Publikationsdatum
16.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-3860-x

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Engineering and Performance 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.