Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2022

27.08.2021

Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties

verfasst von: Guangxin Liao, Zhixiang Li, Congcong Luan, Zhenwei Wang, Xinhua Yao, Jianzhong Fu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, polyamide 66 (PA 66) filaments were prepared for fused filament fabrication (FFF). The effects of the process parameters on the mechanical properties, initial microstructures, dynamic mechanical behavior, and crystallinity of the samples were investigated. The samples obtained at high processing temperatures exhibited high crystallinity, high tensile strength, and low porosity. Almost fully dense samples with excellent mechanical properties were obtained under optimal conditions. The tensile strength of the samples improved by 29.5% (from 68.07 to 88.17 MPa) with an increase in the nozzle temperature from 270 to 290 °C. The elongation at break abruptly increased (from 2.38 to 13.17%), because of the plastic behavior of the material and strain hardening. X-ray diffraction results demonstrated that the crystallinity of PA 66, significantly improved (from 47.3 to 65.6%). In addition, the dynamic mechanical performance of the samples was significantly related to the raster angle. The samples fabricated at a raster angle of 0° exhibited the best dynamic mechanical properties, followed by the 45° and 90° samples. The successful fabrication of PA 66 samples demonstrates the potential use of PA 66 for producing parts using FFF, and provides options for utilizing materials with improved performance for additive manufacturing applications in engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G. Bruno and G. Marchetto, Process-Translatable Petri Nets for the Rapid Prototyping of Process Control Systems, IEEE T. Softw. Eng., 1986, 2, p 346–357.CrossRef G. Bruno and G. Marchetto, Process-Translatable Petri Nets for the Rapid Prototyping of Process Control Systems, IEEE T. Softw. Eng., 1986, 2, p 346–357.CrossRef
2.
Zurück zum Zitat G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu and Y. Zhu, Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling, Mater. Des., 2018, 139, p 283–292.CrossRef G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu and Y. Zhu, Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling, Mater. Des., 2018, 139, p 283–292.CrossRef
3.
Zurück zum Zitat L. Yang, S. Li, Y. Li, M. Yang and Q. Yuan, Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts, J. Mater. Eng. Perform., 2018, 28(1), p 169–182.CrossRef L. Yang, S. Li, Y. Li, M. Yang and Q. Yuan, Experimental Investigations for Optimizing the Extrusion Parameters on FDM PLA Printed Parts, J. Mater. Eng. Perform., 2018, 28(1), p 169–182.CrossRef
4.
Zurück zum Zitat O.S. Carneiro, A.F. Silva and R. Gomes, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.CrossRef O.S. Carneiro, A.F. Silva and R. Gomes, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.CrossRef
5.
Zurück zum Zitat S. Wang, Y. Ma, Z. Deng, S. Zhang and J. Cai, Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties Of 3D Printed Polylactic Acid Materials, Polym. Test., 2020, 86, p 106483.CrossRef S. Wang, Y. Ma, Z. Deng, S. Zhang and J. Cai, Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties Of 3D Printed Polylactic Acid Materials, Polym. Test., 2020, 86, p 106483.CrossRef
6.
Zurück zum Zitat C.-C. Shih, M. Burnette, D. Staack, J. Wang and B.L. Tai, Effects of Cold Plasma Treatment on Interlayer Bonding Strength in FFF Process, Addit. Manuf., 2019, 25, p 104–111. C.-C. Shih, M. Burnette, D. Staack, J. Wang and B.L. Tai, Effects of Cold Plasma Treatment on Interlayer Bonding Strength in FFF Process, Addit. Manuf., 2019, 25, p 104–111.
7.
Zurück zum Zitat S. Pal, G. Lojen, R. Hudak, V. Rajtukova, T. Brajlih, V. Kokol and I. Drstvenšek, As-Fabricated Surface Morphologies of Ti-6Al-4V Samples Fabricated by Different Laser Processing Parameters in Selective Laser Melting, Addit. Manuf., 2020, 33, p 101147. S. Pal, G. Lojen, R. Hudak, V. Rajtukova, T. Brajlih, V. Kokol and I. Drstvenšek, As-Fabricated Surface Morphologies of Ti-6Al-4V Samples Fabricated by Different Laser Processing Parameters in Selective Laser Melting, Addit. Manuf., 2020, 33, p 101147.
8.
Zurück zum Zitat Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie and J. Lin, Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy, Optics Laser Technol., 2015, 2015(75), p 197–206.CrossRef Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie and J. Lin, Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy, Optics Laser Technol., 2015, 2015(75), p 197–206.CrossRef
9.
Zurück zum Zitat D. Olivier, J.A. Travieso-Rodriguez, S. Borros, G. Reyes and R. Jerez-Mesa, Influence of Building Orientation on the Flexural Strength of Laminated Object Manufacturing Specimens, J. Mech. Sci. Technol., 2017, 31(1), p 133–139.CrossRef D. Olivier, J.A. Travieso-Rodriguez, S. Borros, G. Reyes and R. Jerez-Mesa, Influence of Building Orientation on the Flexural Strength of Laminated Object Manufacturing Specimens, J. Mech. Sci. Technol., 2017, 31(1), p 133–139.CrossRef
10.
Zurück zum Zitat W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.CrossRef W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.CrossRef
11.
Zurück zum Zitat T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196.CrossRef T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196.CrossRef
12.
Zurück zum Zitat Y. Yang, L. Li and J. Zhao, Mechanical Property Modeling of Photosensitive Liquid Resin in Stereolithography Additive Manufacturing: Bridging Degree of Cure with Tensile Strength and Hardness, Mater. Des., 2019, 162, p 418–428.CrossRef Y. Yang, L. Li and J. Zhao, Mechanical Property Modeling of Photosensitive Liquid Resin in Stereolithography Additive Manufacturing: Bridging Degree of Cure with Tensile Strength and Hardness, Mater. Des., 2019, 162, p 418–428.CrossRef
13.
Zurück zum Zitat J. Borrello, P. Nasser, J. Iatridis and K.D. Costa, 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer, Addit. Manuf, 2018, 23, p 374–380. J. Borrello, P. Nasser, J. Iatridis and K.D. Costa, 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer, Addit. Manuf, 2018, 23, p 374–380.
14.
Zurück zum Zitat K. Wudy and D. Drummer, Aging Effects of Polyamide 12 in Selective Laser Sintering: Molecular Weight Distribution and Thermal Properties, Addit. Manuf., 2019, 25, p 1–9. K. Wudy and D. Drummer, Aging Effects of Polyamide 12 in Selective Laser Sintering: Molecular Weight Distribution and Thermal Properties, Addit. Manuf., 2019, 25, p 1–9.
15.
Zurück zum Zitat Y. Zhou, S. Xi, Y. Huang, M. Kong, Q. Yang and G. Li, Preparation of Near-Spherical PA12 Particles for Selective Laser Sintering via Plateau-Rayleigh Instability of Molten Fibers, Mater. Des, 2020, 190, p 108578.CrossRef Y. Zhou, S. Xi, Y. Huang, M. Kong, Q. Yang and G. Li, Preparation of Near-Spherical PA12 Particles for Selective Laser Sintering via Plateau-Rayleigh Instability of Molten Fibers, Mater. Des, 2020, 190, p 108578.CrossRef
16.
Zurück zum Zitat D. Zhu, Y. Ren, G. Liao, S. Jiang, F. Liu, J. Guo and G. Xu, Thermal and Mechanical Properties of Polyamide 12/Graphene Nanoplatelets Nanocomposites and Parts Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci., 2017, 134, p 45332.CrossRef D. Zhu, Y. Ren, G. Liao, S. Jiang, F. Liu, J. Guo and G. Xu, Thermal and Mechanical Properties of Polyamide 12/Graphene Nanoplatelets Nanocomposites and Parts Fabricated by Fused Deposition Modeling, J. Appl. Polym. Sci., 2017, 134, p 45332.CrossRef
17.
Zurück zum Zitat Y. Li, S. Gao, R.X. Dong and X. Duan, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, J. Mater. Eng. Perform., 2018, 27, p 492–500.CrossRef Y. Li, S. Gao, R.X. Dong and X. Duan, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, J. Mater. Eng. Perform., 2018, 27, p 492–500.CrossRef
18.
Zurück zum Zitat R. Hashemi Sanatgar, C. Campagne and V. Nierstrasz, Investigation of the Adhesion Properties of Direct 3D Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters, Appl. Surf. Sci., 2017, 403, p 551–563.CrossRef R. Hashemi Sanatgar, C. Campagne and V. Nierstrasz, Investigation of the Adhesion Properties of Direct 3D Printing of Polymers and Nanocomposites on Textiles: Effect of FDM Printing Process Parameters, Appl. Surf. Sci., 2017, 403, p 551–563.CrossRef
19.
Zurück zum Zitat D. Drummer, S. Cifuentes-Cuéllar and D. Rietzel, Suitability of PLA/TCP for Fused Deposition Modeling, Rapid Prototyp. J., 2012, 18, p 500–507.CrossRef D. Drummer, S. Cifuentes-Cuéllar and D. Rietzel, Suitability of PLA/TCP for Fused Deposition Modeling, Rapid Prototyp. J., 2012, 18, p 500–507.CrossRef
20.
Zurück zum Zitat H. Ramezani Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet and T. Breteau, Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties, J. Manuf. Proc., 2019, 44, p 288–298.CrossRef H. Ramezani Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet and T. Breteau, Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties, J. Manuf. Proc., 2019, 44, p 288–298.CrossRef
21.
Zurück zum Zitat A. Kantaros and D. Karalekas, Fiber Bragg Grating Based Investigation of Residual Strains in ABS Parts Fabricated by Fused Deposition Modeling Process, Mater. Des., 2013, 50, p 44–50.CrossRef A. Kantaros and D. Karalekas, Fiber Bragg Grating Based Investigation of Residual Strains in ABS Parts Fabricated by Fused Deposition Modeling Process, Mater. Des., 2013, 50, p 44–50.CrossRef
22.
Zurück zum Zitat K.S. Boparai, R. Singh, F. Fabbrocino and F. Fraternali, Thermal Characterization of Recycled Polymer for Additive Manufacturing Applications, Compos. Part B Eng., 2016, 106, p 42–47.CrossRef K.S. Boparai, R. Singh, F. Fabbrocino and F. Fraternali, Thermal Characterization of Recycled Polymer for Additive Manufacturing Applications, Compos. Part B Eng., 2016, 106, p 42–47.CrossRef
23.
Zurück zum Zitat K.S. Boparai, R. Singh and H. Singh, Process Optimization of Single Screw Extruder for Development of Nylon 6-Al-Al2O3 Alternative FDM Filament, Rapid Prototyp. J., 2016, 22, p 766–776.CrossRef K.S. Boparai, R. Singh and H. Singh, Process Optimization of Single Screw Extruder for Development of Nylon 6-Al-Al2O3 Alternative FDM Filament, Rapid Prototyp. J., 2016, 22, p 766–776.CrossRef
24.
Zurück zum Zitat R. Singh, S. Singh and F. Fraternali, Development of In-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures, Compos. Part B Eng., 2016, 98, p 244–249.CrossRef R. Singh, S. Singh and F. Fraternali, Development of In-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures, Compos. Part B Eng., 2016, 98, p 244–249.CrossRef
25.
Zurück zum Zitat X. Zhang, W. Fan and T. Lin, Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and its Applications, Compos. Comm., 2020, 21, p 100413.CrossRef X. Zhang, W. Fan and T. Lin, Fused Deposition Modeling 3D Printing of Polyamide-Based Composites and its Applications, Compos. Comm., 2020, 21, p 100413.CrossRef
26.
Zurück zum Zitat X. Gao and D. Zhang, Fused Deposition Modeling with Polyamide 1012, Rapid Prototyp. J., 2019, 25, p 1145–1154.CrossRef X. Gao and D. Zhang, Fused Deposition Modeling with Polyamide 1012, Rapid Prototyp. J., 2019, 25, p 1145–1154.CrossRef
27.
Zurück zum Zitat R. Garcı’a-Leo, M. Rodrı’guez-Castilla and W. Quintero-Quintero, Experimental Analysis of Impact Resistance of 3D Polycarbonate and Nylon + Carbon Fiber Specimens, J. Mater. Eng. Perform., 2020, 30, p 4837–4847.CrossRef R. Garcı’a-Leo, M. Rodrı’guez-Castilla and W. Quintero-Quintero, Experimental Analysis of Impact Resistance of 3D Polycarbonate and Nylon + Carbon Fiber Specimens, J. Mater. Eng. Perform., 2020, 30, p 4837–4847.CrossRef
28.
Zurück zum Zitat O. Carneiro, A. Silva and R. Gomesa, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.CrossRef O. Carneiro, A. Silva and R. Gomesa, Fused Deposition Modeling with Polypropylene, Mater. Des., 2015, 83, p 768–776.CrossRef
29.
Zurück zum Zitat R. Sharma, R. Singh, R. Penna and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC and PP Based 3D Porous Structures Obtained Through Biocompatible FDM Filaments, Compos. Part B Eng., 2018, 132, p 237–243.CrossRef R. Sharma, R. Singh, R. Penna and F. Fraternali, Investigations for Mechanical Properties of Hap, PVC and PP Based 3D Porous Structures Obtained Through Biocompatible FDM Filaments, Compos. Part B Eng., 2018, 132, p 237–243.CrossRef
30.
Zurück zum Zitat G. Sodeifiana, S. Ghaseminejada and A. Yousefid, Preparation of Polypropylene/Short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament, Results Phys., 2019, 12, p 205–222.CrossRef G. Sodeifiana, S. Ghaseminejada and A. Yousefid, Preparation of Polypropylene/Short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament, Results Phys., 2019, 12, p 205–222.CrossRef
31.
Zurück zum Zitat A. de León, A. Domínguez-Calvo and S. Molina, Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF), Mater. Des., 2019, 182, p 108044.CrossRef A. de León, A. Domínguez-Calvo and S. Molina, Materials with Enhanced Adhesive Properties Based on Acrylonitrile-Butadiene-Styrene (ABS)/Thermoplastic Polyurethane (TPU) Blends for Fused Filament Fabrication (FFF), Mater. Des., 2019, 182, p 108044.CrossRef
32.
Zurück zum Zitat G. Kima, E. Barociob, R. Pipesb and R. Sterkenburga, 3D Printed Thermoplastic Polyurethane Bladder for Manufacturing of Fiber Reinforced Composites, Addit. Manuf., 2019, 29, p 100809. G. Kima, E. Barociob, R. Pipesb and R. Sterkenburga, 3D Printed Thermoplastic Polyurethane Bladder for Manufacturing of Fiber Reinforced Composites, Addit. Manuf., 2019, 29, p 100809.
33.
Zurück zum Zitat H. Li, S. Zhang, Z. Yi, J. Li, A. Sun, J. Guo and G. Xu, Bonding Quality and Fracture Analysis of Polyamide 12 Parts Fabricated by Fused Deposition Modeling, Rapid Prototyp. J., 2017, 23, p 973–982.CrossRef H. Li, S. Zhang, Z. Yi, J. Li, A. Sun, J. Guo and G. Xu, Bonding Quality and Fracture Analysis of Polyamide 12 Parts Fabricated by Fused Deposition Modeling, Rapid Prototyp. J., 2017, 23, p 973–982.CrossRef
34.
Zurück zum Zitat K. Tamura, S. Ohyama, K. Umeyama, T. Kitazawa and A. Yamagishi, Preparation and Properties of Halogen-Free Flame-Retardant Layered Silicate-Polyamide 66 Nanocomposites, Appl. Clay Sci., 2016, 126, p 107–112.CrossRef K. Tamura, S. Ohyama, K. Umeyama, T. Kitazawa and A. Yamagishi, Preparation and Properties of Halogen-Free Flame-Retardant Layered Silicate-Polyamide 66 Nanocomposites, Appl. Clay Sci., 2016, 126, p 107–112.CrossRef
35.
Zurück zum Zitat S. Lei, H. Yuan, H. Qingliang and Y. Fei, Study on Crystallization, Thermal and Flame Retardant Properties of Nylon 66/Organoclay Nanocomposites by in situ Polymerization, J. Fire Sci., 2008, 26, p 475–492.CrossRef S. Lei, H. Yuan, H. Qingliang and Y. Fei, Study on Crystallization, Thermal and Flame Retardant Properties of Nylon 66/Organoclay Nanocomposites by in situ Polymerization, J. Fire Sci., 2008, 26, p 475–492.CrossRef
36.
Zurück zum Zitat Z. Chen, X. Liu, R. Lu and T. Li, Friction and Wear Mechanisms of PA66/PPS Blend Reinforced with Carbon Fiber, J. Appl. Polym. Sci., 2007, 105, p 602–608.CrossRef Z. Chen, X. Liu, R. Lu and T. Li, Friction and Wear Mechanisms of PA66/PPS Blend Reinforced with Carbon Fiber, J. Appl. Polym. Sci., 2007, 105, p 602–608.CrossRef
37.
Zurück zum Zitat K. Shibata, T. Yamaguchi and K. Hokkirigawa, Tribological Behavior of Polyamide 66/Rice Bran Ceramics and Polyamide 66/Glass Bead Composites, Wear, 2014, 317, p 1–7.CrossRef K. Shibata, T. Yamaguchi and K. Hokkirigawa, Tribological Behavior of Polyamide 66/Rice Bran Ceramics and Polyamide 66/Glass Bead Composites, Wear, 2014, 317, p 1–7.CrossRef
38.
Zurück zum Zitat F. Chavarria and D.R. Paul, Comparison of Nanocomposites Based on Nylon 6 and Nylon 66, Polymer, 2004, 45(25), p 8501–8515.CrossRef F. Chavarria and D.R. Paul, Comparison of Nanocomposites Based on Nylon 6 and Nylon 66, Polymer, 2004, 45(25), p 8501–8515.CrossRef
39.
Zurück zum Zitat C. Fernandez-Barranco, A. Yebra-Rodriguez, M.D. La Rubia-Garcia, F.J. Navas-Martos and P. Alvarez-Lloret, Mechanical and Crystallographic Properties of Injection-Molded Polyamide 66/Sepiolite Nanocomposites with Different Clay Loading, Polym. Compos., 2015, 36(12), p 2326–2333.CrossRef C. Fernandez-Barranco, A. Yebra-Rodriguez, M.D. La Rubia-Garcia, F.J. Navas-Martos and P. Alvarez-Lloret, Mechanical and Crystallographic Properties of Injection-Molded Polyamide 66/Sepiolite Nanocomposites with Different Clay Loading, Polym. Compos., 2015, 36(12), p 2326–2333.CrossRef
40.
Zurück zum Zitat R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki and A.K. Bhowmick, Polyamide-6,6/in Situ Silica Hybrid Nanocomposites by Sol–Gel Technique: Synthesis, Characterization And Properties, Polymer, 2005, 46(10), p 3343–3354.CrossRef R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki and A.K. Bhowmick, Polyamide-6,6/in Situ Silica Hybrid Nanocomposites by Sol–Gel Technique: Synthesis, Characterization And Properties, Polymer, 2005, 46(10), p 3343–3354.CrossRef
41.
Zurück zum Zitat H.-L. Wang, T.-J. Shi, S.-Z. Yang, L.-F. Zhai and G.-P. Hang, Crystallization Behavior of PA66/SiO2 Organic-Inorganic Hybrid Material, J. Appl. Polym. Sci., 2006, 101, p 810–817.CrossRef H.-L. Wang, T.-J. Shi, S.-Z. Yang, L.-F. Zhai and G.-P. Hang, Crystallization Behavior of PA66/SiO2 Organic-Inorganic Hybrid Material, J. Appl. Polym. Sci., 2006, 101, p 810–817.CrossRef
42.
Zurück zum Zitat X. Li, Y. Liu, C. Guo, H. Liu, G. Wang, Q. Cai and Y. Yao, Influence of Layered Aluminoborophosphate on Flame Retardance, Crystallization Behaviors and Mechanical Properties of Polyamide 66 Systems, Chem. Res. Chine. U, 2016, 32, p 127–133.CrossRef X. Li, Y. Liu, C. Guo, H. Liu, G. Wang, Q. Cai and Y. Yao, Influence of Layered Aluminoborophosphate on Flame Retardance, Crystallization Behaviors and Mechanical Properties of Polyamide 66 Systems, Chem. Res. Chine. U, 2016, 32, p 127–133.CrossRef
43.
Zurück zum Zitat R. Li, Z. Chen and J. Pei, High Dielectric Performance of Polyamide 66/Poly(Vinylidene Fluoride) Flexible Blends Induced by Interfacial Copolymer for Capacitors, Polymers, 2015, 8(1), p 2.CrossRef R. Li, Z. Chen and J. Pei, High Dielectric Performance of Polyamide 66/Poly(Vinylidene Fluoride) Flexible Blends Induced by Interfacial Copolymer for Capacitors, Polymers, 2015, 8(1), p 2.CrossRef
44.
Zurück zum Zitat G. Li, J. Zhao, W. Wu, J. Jiang, B. Wang, H. Jiang and J.Y.H. Fuh, Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers, Materials, 2018, 11(5), p 826.CrossRef G. Li, J. Zhao, W. Wu, J. Jiang, B. Wang, H. Jiang and J.Y.H. Fuh, Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers, Materials, 2018, 11(5), p 826.CrossRef
45.
Zurück zum Zitat Y. Lu, Y. Zhang, G. Zhang, M. Yang, S. Yan and D. Shen, Influence of Thermal Processing on the Perfection of Crystals in Polyamide 66 and Polyamide 66/Clay Nanocomposites, Polymer, 2004, 45(26), p 8999–9009.CrossRef Y. Lu, Y. Zhang, G. Zhang, M. Yang, S. Yan and D. Shen, Influence of Thermal Processing on the Perfection of Crystals in Polyamide 66 and Polyamide 66/Clay Nanocomposites, Polymer, 2004, 45(26), p 8999–9009.CrossRef
46.
Zurück zum Zitat N. Cheval, F. Xu, N. Gindy, R. Brooks, Y. Zhu and A. Fahmi, Morphology, Crystallinity and Thermal Properties of Polyamide 66/Polyoxometalate Nanocomposites Synthesised Via an in situ Sol/Gel Process, Macromol. Chem. Phys., 2011, 212, p 180–190.CrossRef N. Cheval, F. Xu, N. Gindy, R. Brooks, Y. Zhu and A. Fahmi, Morphology, Crystallinity and Thermal Properties of Polyamide 66/Polyoxometalate Nanocomposites Synthesised Via an in situ Sol/Gel Process, Macromol. Chem. Phys., 2011, 212, p 180–190.CrossRef
47.
Zurück zum Zitat J. Chen, W. Wu, Y. You, W. Fan and Y. Chen, Morphology and Properties of the PA66/PC/Silicone Rubber Composites, J. Appl. Polym. Sci., 2010, 117, p 2964–2971. J. Chen, W. Wu, Y. You, W. Fan and Y. Chen, Morphology and Properties of the PA66/PC/Silicone Rubber Composites, J. Appl. Polym. Sci., 2010, 117, p 2964–2971.
48.
Zurück zum Zitat A. Costanzo, U. Croce, R. Spotorno, S. Fenni and D. Cavallo, Fused Deposition Modeling of Polyamides: Crystallization and Weld Formation, Polymers, 2020, 12, p 2980.CrossRef A. Costanzo, U. Croce, R. Spotorno, S. Fenni and D. Cavallo, Fused Deposition Modeling of Polyamides: Crystallization and Weld Formation, Polymers, 2020, 12, p 2980.CrossRef
49.
Zurück zum Zitat C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Tech., 2017, 248, p 1–7.CrossRef C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, Influence of Thermal Processing Conditions in 3D Printing on the Crystallinity and Mechanical Properties of PEEK Material, J. Mater. Process. Tech., 2017, 248, p 1–7.CrossRef
50.
Zurück zum Zitat S. Zhou, L. Zhang, Y.-Y. Wang, Y. Zuo, S.-B. Gao and Y.-B. Li, A Novel Hydroxyapatite/Ethylene-Vinyl Acetate/Copolymer 66 Composite for Hard Tissue Regeneration, J. Macromol. Sci. Part B, 2012, 51(1), p 1–11.CrossRef S. Zhou, L. Zhang, Y.-Y. Wang, Y. Zuo, S.-B. Gao and Y.-B. Li, A Novel Hydroxyapatite/Ethylene-Vinyl Acetate/Copolymer 66 Composite for Hard Tissue Regeneration, J. Macromol. Sci. Part B, 2012, 51(1), p 1–11.CrossRef
51.
Zurück zum Zitat L. Wang, J. Palmer, M. Tajvidi, D. Gardner and Y. Han, Thermal Properties of Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites from Extrusion-Based Additive Manufacturing, J. Therm. Anal. Calorim., 2019, 136, p 1069–1077.CrossRef L. Wang, J. Palmer, M. Tajvidi, D. Gardner and Y. Han, Thermal Properties of Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites from Extrusion-Based Additive Manufacturing, J. Therm. Anal. Calorim., 2019, 136, p 1069–1077.CrossRef
52.
Zurück zum Zitat O. Mohamed, S. Masood and J. Bhowmik, Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS, Materials, 2016, 9(11), p 895.CrossRef O. Mohamed, S. Masood and J. Bhowmik, Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS, Materials, 2016, 9(11), p 895.CrossRef
53.
Zurück zum Zitat H. Prajapati, D. Ravoori, R. Woods and A. Jain, Measurement of Anisotropic Thermal Conductivity and Inter-Layer Thermal Contact Resistance in Polymer Fused Deposition Modeling (FDM), Addit. Manuf., 2018, 21, p 84–90. H. Prajapati, D. Ravoori, R. Woods and A. Jain, Measurement of Anisotropic Thermal Conductivity and Inter-Layer Thermal Contact Resistance in Polymer Fused Deposition Modeling (FDM), Addit. Manuf., 2018, 21, p 84–90.
54.
Zurück zum Zitat C. Balderrama-Armendariz, E. MacDonald, D. Espalin, D. Cortes-Saenz, R. Wicker and A. Maldonado-Macias, Torsion Analysis of the Anisotropic Behavior of FDM Technology, Anisotropic Material Properties of Fused Deposition Modeling ABS, Int. J. Adv. Manuf. Technol., 2018, 96, p 307–317.CrossRef C. Balderrama-Armendariz, E. MacDonald, D. Espalin, D. Cortes-Saenz, R. Wicker and A. Maldonado-Macias, Torsion Analysis of the Anisotropic Behavior of FDM Technology, Anisotropic Material Properties of Fused Deposition Modeling ABS, Int. J. Adv. Manuf. Technol., 2018, 96, p 307–317.CrossRef
55.
Zurück zum Zitat J. Nelson, D. Atkins, M. Gottstine and J. Yang, Generalized Models for Unidirectional Anisotropic Properties of 3D Printed Polymers, Rapid Prototyp. J., 2020, 26, p 1453–1462.CrossRef J. Nelson, D. Atkins, M. Gottstine and J. Yang, Generalized Models for Unidirectional Anisotropic Properties of 3D Printed Polymers, Rapid Prototyp. J., 2020, 26, p 1453–1462.CrossRef
56.
Zurück zum Zitat S. Garzon-Hernandez, A. Arias and D. Garcia-Gonzalez, A Continuum Constitutive Model for FDM 3D Printed Thermoplastics, Compos. Part B Eng., 2020, 201, p 108373.CrossRef S. Garzon-Hernandez, A. Arias and D. Garcia-Gonzalez, A Continuum Constitutive Model for FDM 3D Printed Thermoplastics, Compos. Part B Eng., 2020, 201, p 108373.CrossRef
57.
Zurück zum Zitat F. Kayaci, H.S. Sen, E. Durgun and T. Uyar, Electrospun Nylon 6,6 Nanofibers Functionalized with Cyclodextrins for Removal of Toluene Vapor, J. Appl. Polym. Sci., 2015, 132, p 41941.CrossRef F. Kayaci, H.S. Sen, E. Durgun and T. Uyar, Electrospun Nylon 6,6 Nanofibers Functionalized with Cyclodextrins for Removal of Toluene Vapor, J. Appl. Polym. Sci., 2015, 132, p 41941.CrossRef
58.
Zurück zum Zitat A. Rhoadesa, J. Williams and R. Androsch, Crystallization Kinetics of Polyamide 66 At Processing-Relevant Cooling Conditions and High Supercooling, Thermochim. Acta, 2015, 603, p 103–109.CrossRef A. Rhoadesa, J. Williams and R. Androsch, Crystallization Kinetics of Polyamide 66 At Processing-Relevant Cooling Conditions and High Supercooling, Thermochim. Acta, 2015, 603, p 103–109.CrossRef
59.
Zurück zum Zitat A. Gohna, A. Rhoadesa, N. Wonderling, T. Tighe and R. Androschc, The Effect of Supercooling of the Melt on the Semicrystalline Morphology of PA 66, Thermochim. Acta, 2017, 655, p 313–318.CrossRef A. Gohna, A. Rhoadesa, N. Wonderling, T. Tighe and R. Androschc, The Effect of Supercooling of the Melt on the Semicrystalline Morphology of PA 66, Thermochim. Acta, 2017, 655, p 313–318.CrossRef
60.
Zurück zum Zitat Q. Meng, Y. Gu, L. Luo, S. Wang, M. Li and Z. Zhang, Annealing Effect on Crystalline Structure and Mechanical Properties in Long Glass Fiber Reinforced Polyamide 66, J. Appl. Polym. Sci., 2017, 134, p 44832.CrossRef Q. Meng, Y. Gu, L. Luo, S. Wang, M. Li and Z. Zhang, Annealing Effect on Crystalline Structure and Mechanical Properties in Long Glass Fiber Reinforced Polyamide 66, J. Appl. Polym. Sci., 2017, 134, p 44832.CrossRef
61.
Zurück zum Zitat X. Zhang, X. Xu and T. Wu, Mechanical Properties, Thermal and Crystallization Behavior of Different Surface-Modified Silica Nanoparticle-Filled PA66 Composites, J. Polym. Eng., 2017, 37, p 559–576.CrossRef X. Zhang, X. Xu and T. Wu, Mechanical Properties, Thermal and Crystallization Behavior of Different Surface-Modified Silica Nanoparticle-Filled PA66 Composites, J. Polym. Eng., 2017, 37, p 559–576.CrossRef
Metadaten
Titel
Additive Manufacturing of Polyamide 66: Effect of Process Parameters on Crystallinity and Mechanical Properties
verfasst von
Guangxin Liao
Zhixiang Li
Congcong Luan
Zhenwei Wang
Xinhua Yao
Jianzhong Fu
Publikationsdatum
27.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06149-6

Weitere Artikel der Ausgabe 1/2022

Journal of Materials Engineering and Performance 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.