Skip to main content

07.08.2023 | Original Research Article

Prediction of Cutting Forces in Hard Turning Process Using Machine Learning Methods: A Case Study

verfasst von: Souâd Makhfi, Abdelhakim Dorbane, Fouzi Harrou, Ying Sun

Erschienen in: Journal of Materials Engineering and Performance

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurately predicting cutting forces in hard turning processes can lead to improved process control, reduced tool wear, and enhanced productivity. This study aims to predict machining force components during the hard turning of AISI 52100 bearing steel using machine learning models. Specifically, eight models were considered, and their prediction performance was assessed using experimental data collected during AISI 52100 bearing steel turning with a CBN cutting tool. The fivefold cross-validation technique has been adopted in training to obtain more reliable estimates of the performance of a model and reduce the risk of overfitting the data. Results showed that the Gaussian process regression (GPR) and decision tree regression outperformed the other models, with averaged root-mean-square error values of 14.44 and 12.72, respectively. GPR also provided prediction uncertainty. Additionally, feature selection was performed using two algorithms, namely Regressional Relief-F and F test, to identify the most important features impacting the cutting forces. The findings of this study can be useful in optimizing cutting parameters for hard turning processes to select cutting forces, reduce tool wear, and minimize the generated heat during the machining process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.K.S.R. Schmid, Manufacturing Engineering and Technology. J. Mater. Process. Technol. (2013). S.K.S.R. Schmid, Manufacturing Engineering and Technology. J. Mater. Process. Technol. (2013).
2.
Zurück zum Zitat S. Makhfi, K. Haddouche, A. Bourdim, and M. Habak, Modeling of Machining Force in Hard Turning Process, Mech. Kauno Technol. Univ., 2018, 24(3), p 367–375. S. Makhfi, K. Haddouche, A. Bourdim, and M. Habak, Modeling of Machining Force in Hard Turning Process, Mech. Kauno Technol. Univ., 2018, 24(3), p 367–375.
3.
Zurück zum Zitat M.W. Azizi, O. Keblouti, L. Boulanouar, and M.A. Yallese, Design Optimization in Hard Turning of E19 Alloy Steel by Analysing Surface Roughness, Tool Vibration and Productivity, Struct. Eng. Mech., 2020, 73(5), p 501–513. M.W. Azizi, O. Keblouti, L. Boulanouar, and M.A. Yallese, Design Optimization in Hard Turning of E19 Alloy Steel by Analysing Surface Roughness, Tool Vibration and Productivity, Struct. Eng. Mech., 2020, 73(5), p 501–513.
4.
Zurück zum Zitat S. Roy, R. Kumar, A.K. Sahoo, A. Pandey, and A. Panda, Investigation on Hard Turning Temperature under a Novel Pulsating MQL Environment: An Experimental and Modelling Approach, Mech. Ind., 2020, 21(6), p 605.CrossRef S. Roy, R. Kumar, A.K. Sahoo, A. Pandey, and A. Panda, Investigation on Hard Turning Temperature under a Novel Pulsating MQL Environment: An Experimental and Modelling Approach, Mech. Ind., 2020, 21(6), p 605.CrossRef
5.
Zurück zum Zitat A. Chavan and V. Sargade, Surface Integrity of AISI 52100 Steel during Hard Turning in Different Near-Dry Environments, Adv. Mater. Sci. Eng., 2020, 2020, p 1.CrossRef A. Chavan and V. Sargade, Surface Integrity of AISI 52100 Steel during Hard Turning in Different Near-Dry Environments, Adv. Mater. Sci. Eng., 2020, 2020, p 1.CrossRef
6.
Zurück zum Zitat F.K. Branco, S. Delijaicov, É.C. Bordinassi, and R. Bortolussi, Surface Integrity Analisys in the Hard Turning of Cemented Steel AISI 4317, Mater. Res., 2018, 21(5). F.K. Branco, S. Delijaicov, É.C. Bordinassi, and R. Bortolussi, Surface Integrity Analisys in the Hard Turning of Cemented Steel AISI 4317, Mater. Res., 2018, 21(5).
7.
Zurück zum Zitat P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, and H.S. Gill, Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation, Materials (Basel)., MDPI AG, 2019, 12(1). P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, and H.S. Gill, Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation, Materials (Basel)., MDPI AG, 2019, 12(1).
8.
Zurück zum Zitat P. Umamaheswarrao, D. Rangaraju, K.N.S. Suman, and B. Ravisankar, Machining Force Comparison for Surface Defect Hard Turning and Conventional Hard Turning of AISI 52100 Steel, INCAS Bull., 2021, 13(3), p 205–214.CrossRef P. Umamaheswarrao, D. Rangaraju, K.N.S. Suman, and B. Ravisankar, Machining Force Comparison for Surface Defect Hard Turning and Conventional Hard Turning of AISI 52100 Steel, INCAS Bull., 2021, 13(3), p 205–214.CrossRef
9.
Zurück zum Zitat C. Cappellini and A. Abeni, Development and Implementation of Crater and Flank Tool Wear Model for Hard Turning Simulations, Int. J. Adv. Manuf. Technol., 2022, 120(3–4), p 2055.CrossRef C. Cappellini and A. Abeni, Development and Implementation of Crater and Flank Tool Wear Model for Hard Turning Simulations, Int. J. Adv. Manuf. Technol., 2022, 120(3–4), p 2055.CrossRef
10.
Zurück zum Zitat M. Marconi and R. Menghi, A Sustainable Manufacturing Tool for the Analysis and Management of Resource Consumption within Production Processes, Int. J. Interact. Des. Manuf., 2021, 15(1), p 65.CrossRef M. Marconi and R. Menghi, A Sustainable Manufacturing Tool for the Analysis and Management of Resource Consumption within Production Processes, Int. J. Interact. Des. Manuf., 2021, 15(1), p 65.CrossRef
11.
Zurück zum Zitat W. Cai and K. Hung Lai, Sustainability Assessment of Mechanical Manufacturing Systems in the Industrial Sector, Renew. Sustain. Energy Rev., 2021, 135, p 110169.CrossRef W. Cai and K. Hung Lai, Sustainability Assessment of Mechanical Manufacturing Systems in the Industrial Sector, Renew. Sustain. Energy Rev., 2021, 135, p 110169.CrossRef
12.
Zurück zum Zitat M. Jamil, A.M. Khan, N. He, L. Li, A. Iqbal, and M. Mia, Evaluation of Machinability and Economic Performance in Cryogenic-Assisted Hard Turning of α-β Titanium: A Step towards Sustainable Manufacturing, Mach. Sci. Technol., 2019, 23(6), p 1022.CrossRef M. Jamil, A.M. Khan, N. He, L. Li, A. Iqbal, and M. Mia, Evaluation of Machinability and Economic Performance in Cryogenic-Assisted Hard Turning of α-β Titanium: A Step towards Sustainable Manufacturing, Mach. Sci. Technol., 2019, 23(6), p 1022.CrossRef
13.
Zurück zum Zitat R. Nur, N.M. Yusof, I. Sudin, F.M. Nor, and D. Kurniawan, Determination of Energy Consumption during Turning of Hardened Stainless Steel Using Resultant Cutting Force, Metals (Basel), 2021, 11(4), p 565.CrossRef R. Nur, N.M. Yusof, I. Sudin, F.M. Nor, and D. Kurniawan, Determination of Energy Consumption during Turning of Hardened Stainless Steel Using Resultant Cutting Force, Metals (Basel), 2021, 11(4), p 565.CrossRef
14.
Zurück zum Zitat A. Sahinoglu and E. Ulas, An Investigation of Cutting Parameters Effect on Sound Level, Surface Roughness, and Power Consumption during Machining of Hardened AISI 4140, Mech. Ind., 2020, 21(5), p 523.CrossRef A. Sahinoglu and E. Ulas, An Investigation of Cutting Parameters Effect on Sound Level, Surface Roughness, and Power Consumption during Machining of Hardened AISI 4140, Mech. Ind., 2020, 21(5), p 523.CrossRef
18.
Zurück zum Zitat K. Guo, Y. Zhenze, C.-H. Yu, and M. Buehler, Artificial Intelligence and Machine Learning in Design of Mechanical Materials, Mater. Horiz., 2021, 8, p 1153.CrossRef K. Guo, Y. Zhenze, C.-H. Yu, and M. Buehler, Artificial Intelligence and Machine Learning in Design of Mechanical Materials, Mater. Horiz., 2021, 8, p 1153.CrossRef
19.
Zurück zum Zitat M. Fernandes, J.M. Corchado and G. Marreiros, Machine Learning Techniques Applied to Mechanical Fault Diagnosis and Fault Prognosis in the Context of Real Industrial Manufacturing Use-Cases: A Systematic Literature Review, Appl. Intell., 2022, 52(12), p 14246–14280. https://doi.org/10.1007/s10489-022-03344-3CrossRef M. Fernandes, J.M. Corchado and G. Marreiros, Machine Learning Techniques Applied to Mechanical Fault Diagnosis and Fault Prognosis in the Context of Real Industrial Manufacturing Use-Cases: A Systematic Literature Review, Appl. Intell., 2022, 52(12), p 14246–14280. https://​doi.​org/​10.​1007/​s10489-022-03344-3CrossRef
20.
Zurück zum Zitat K. Singh and I.A. Sultan, A Computer-Aided Sustainable Modelling and Optimization Analysis of Cnc Milling and Turning Processes, J. Manuf. Mater. Process., 2018, 2(4), p 65. K. Singh and I.A. Sultan, A Computer-Aided Sustainable Modelling and Optimization Analysis of Cnc Milling and Turning Processes, J. Manuf. Mater. Process., 2018, 2(4), p 65.
21.
Zurück zum Zitat D. Cica, B. Sredanovic, and S. Tesic, Predictive Modeling of Turning Operations under Different Cooling / Lubricating Conditions for Sustainable Manufacturing with Machine Learning Techniques, (2020). D. Cica, B. Sredanovic, and S. Tesic, Predictive Modeling of Turning Operations under Different Cooling / Lubricating Conditions for Sustainable Manufacturing with Machine Learning Techniques, (2020).
24.
Zurück zum Zitat S. Makhfi, M. Habak, R. Velasco, K. Haddouche, and P. Vantomme, Prediction of Cutting Forces Using ANNs Approach in Hard Turning of AISI 52100 Steel, AIP Conf. Proc., American Institute of Physics, 2011, 1353(1), p 669-674, doi:https://doi.org/10.1063/1.3589592. S. Makhfi, M. Habak, R. Velasco, K. Haddouche, and P. Vantomme, Prediction of Cutting Forces Using ANNs Approach in Hard Turning of AISI 52100 Steel, AIP Conf. Proc., American Institute of Physics, 2011, 1353(1), p 669-674, doi:https://​doi.​org/​10.​1063/​1.​3589592.
26.
Zurück zum Zitat A.K. Sahoo, A.K. Rout, and D.K. Das, Response Surface and Artificial Neural Network Prediction Model and Optimization for Surface Roughness in Machining, Int. J. Ind. Eng. Comput., 2015, 6(2), p 229–240. A.K. Sahoo, A.K. Rout, and D.K. Das, Response Surface and Artificial Neural Network Prediction Model and Optimization for Surface Roughness in Machining, Int. J. Ind. Eng. Comput., 2015, 6(2), p 229–240.
27.
Zurück zum Zitat R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, and M. Ukamanal, Experimental Investigation on Hard Turning Using Mixed Ceramic Insert under Accelerated Cooling Environment, Int. J. Ind. Eng. Comput., 2018, 9(4), p 509–522. R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, and M. Ukamanal, Experimental Investigation on Hard Turning Using Mixed Ceramic Insert under Accelerated Cooling Environment, Int. J. Ind. Eng. Comput., 2018, 9(4), p 509–522.
28.
Zurück zum Zitat A. Panda, A.K. Sahoo, and A.K. Rout, Investigations on Surface Quality Characteristics with Multi-Response Parametric Optimization and Correlations, Alexandria Eng. J., 2016, 55(2), p 1625–1633.CrossRef A. Panda, A.K. Sahoo, and A.K. Rout, Investigations on Surface Quality Characteristics with Multi-Response Parametric Optimization and Correlations, Alexandria Eng. J., 2016, 55(2), p 1625–1633.CrossRef
29.
Zurück zum Zitat A.K. Sahoo, K. Orra, and B.C. Routra, Application of Response Surface Methodology on Investigating Flank Wear in Machining Hardened Steel Using PVD TiN Coated Mixed Ceramic Insert, Int. J. Ind. Eng. Comput., 2013, 4(4), p 469–478. A.K. Sahoo, K. Orra, and B.C. Routra, Application of Response Surface Methodology on Investigating Flank Wear in Machining Hardened Steel Using PVD TiN Coated Mixed Ceramic Insert, Int. J. Ind. Eng. Comput., 2013, 4(4), p 469–478.
30.
Zurück zum Zitat R.K. Das, A.K. Sahoo, P.C. Mishra, R. Kumar, and A. Panda, Comparative Machinability Performance of Heat Treated 4340 Steel under Dry and Minimum Quantity Lubrication Surroundings, Procedia Manuf., 2018, 20, p 377–385.CrossRef R.K. Das, A.K. Sahoo, P.C. Mishra, R. Kumar, and A. Panda, Comparative Machinability Performance of Heat Treated 4340 Steel under Dry and Minimum Quantity Lubrication Surroundings, Procedia Manuf., 2018, 20, p 377–385.CrossRef
31.
Zurück zum Zitat A. Panda, A.K. Sahoo, R. Kumar, and R.K. Das, A Review on Machinability Aspects for AISI 52100 Bearing Steel, Mater. Today Proc., 2020, 23, p 617–621.CrossRef A. Panda, A.K. Sahoo, R. Kumar, and R.K. Das, A Review on Machinability Aspects for AISI 52100 Bearing Steel, Mater. Today Proc., 2020, 23, p 617–621.CrossRef
32.
Zurück zum Zitat I. Urresti, I. Llanos, J. Zurbitu, and O. Zelaieta, Tool Wear Modelling of Cryogenic-Assisted Hard Turning of AISI 52100. Procedia CIRP, (2021). I. Urresti, I. Llanos, J. Zurbitu, and O. Zelaieta, Tool Wear Modelling of Cryogenic-Assisted Hard Turning of AISI 52100. Procedia CIRP, (2021).
33.
Zurück zum Zitat P. Umamaheswarrao, D. Ranga Raju, K.N.S. Suman, and B. Ravi Sankar, Hybrid Optimal Scheme for Minimizing Machining Force and Surface Roughness in Hard Turning of AISI 52100 Steel, Int J Eng Sci Technol., 2019, 11(3), p 19–29.CrossRef P. Umamaheswarrao, D. Ranga Raju, K.N.S. Suman, and B. Ravi Sankar, Hybrid Optimal Scheme for Minimizing Machining Force and Surface Roughness in Hard Turning of AISI 52100 Steel, Int J Eng Sci Technol., 2019, 11(3), p 19–29.CrossRef
34.
Zurück zum Zitat A. Anand, A.K. Behera, and S.R. Das, An Overview on Economic Machining of Hardened Steels by Hard Turning and Its Process Variables, Manuf. Rev., 2019, 6, p 4. A. Anand, A.K. Behera, and S.R. Das, An Overview on Economic Machining of Hardened Steels by Hard Turning and Its Process Variables, Manuf. Rev., 2019, 6, p 4.
35.
Zurück zum Zitat S. Makhfi, Modélisation et Simulation Du Comportement Themomécanique de l’usinage à Grande Vitesse. (2018). S. Makhfi, Modélisation et Simulation Du Comportement Themomécanique de l’usinage à Grande Vitesse. (2018).
36.
Zurück zum Zitat I.E. Frank and J.H. Friedman, A Statistical View of Some Chemometrics Regression Tools, Technometrics, [Taylor & Francis, Ltd., American Statistical Association, American Society for Quality], 1993, 35(2), p 109–135, doi:https://doi.org/10.2307/1269656. I.E. Frank and J.H. Friedman, A Statistical View of Some Chemometrics Regression Tools, Technometrics, [Taylor & Francis, Ltd., American Statistical Association, American Society for Quality], 1993, 35(2), p 109–135, doi:https://​doi.​org/​10.​2307/​1269656.
37.
Zurück zum Zitat B. Bouyeddou, F. Harrou, A. Saidi, and Y. Sun, An Effective Wind Power Prediction Using Latent Regression Models, in 2021 International Conference on ICT for Smart Society (ICISS), 2021, p 1–6. B. Bouyeddou, F. Harrou, A. Saidi, and Y. Sun, An Effective Wind Power Prediction Using Latent Regression Models, in 2021 International Conference on ICT for Smart Society (ICISS), 2021, p 1–6.
39.
Zurück zum Zitat W. Loh, Classification and Regression Trees, Wiley Interdiscip. Rev. data Min. Knowl. Discov., 2011, 1(1), p 14–23.CrossRef W. Loh, Classification and Regression Trees, Wiley Interdiscip. Rev. data Min. Knowl. Discov., 2011, 1(1), p 14–23.CrossRef
40.
Zurück zum Zitat W. Hong, Y. Dong, L.-Y. Chen, and S.-Y. Wei, SVR with Hybrid Chaotic Genetic Algorithms for Tourism Demand Forecasting, Appl. Soft Comput., 2011, 11, p 1881–1890.CrossRef W. Hong, Y. Dong, L.-Y. Chen, and S.-Y. Wei, SVR with Hybrid Chaotic Genetic Algorithms for Tourism Demand Forecasting, Appl. Soft Comput., 2011, 11, p 1881–1890.CrossRef
42.
Zurück zum Zitat J. Lee, W. Wang, F. Harrou, and Y. Sun, Reliable Solar Irradiance Prediction Using Ensemble Learning-Based Models: A Comparative Study, Energy Convers. Manag., 2020, 208, p 112582.CrossRef J. Lee, W. Wang, F. Harrou, and Y. Sun, Reliable Solar Irradiance Prediction Using Ensemble Learning-Based Models: A Comparative Study, Energy Convers. Manag., 2020, 208, p 112582.CrossRef
46.
Zurück zum Zitat L. Tang, L. Yu, S. Wang, J. Li, and S. Wang, A Novel Hybrid Ensemble Learning Paradigm for Nuclear Energy Consumption Forecasting, Appl. Energy, 2012, 93, p 432.CrossRef L. Tang, L. Yu, S. Wang, J. Li, and S. Wang, A Novel Hybrid Ensemble Learning Paradigm for Nuclear Energy Consumption Forecasting, Appl. Energy, 2012, 93, p 432.CrossRef
Metadaten
Titel
Prediction of Cutting Forces in Hard Turning Process Using Machine Learning Methods: A Case Study
verfasst von
Souâd Makhfi
Abdelhakim Dorbane
Fouzi Harrou
Ying Sun
Publikationsdatum
07.08.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08555-4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.