Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2021

11.11.2020

Fabrication of graphene-coated poly(glycidyl methacrylate) microspheres by electrostatic interaction and their application in epoxy anticorrosion coatings

verfasst von: Meng Li, Yiyi Li, Jiatian Zhang, Dandan Zhang, Jie Li, Kaibin He, Yiting Xu, Birong Zeng, Lizong Dai

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The uneven dispersion of graphene in the resin matrix hinders its application in anticorrosion coatings. This study reports a new method where graphene oxide (GO) is coated on the surface of the poly(glycidyl methacrylate) (PGMA) microspheres to promote the dispersion of GO in epoxy resin (EP) to improve the anticorrosion performance of EP. GO-coated PGMA microspheres (PGMA@GO) were successfully fabricated by electrostatic interaction, which was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and zeta potential analysis. The scanning electron microscopy results showed that the PGMA microspheres were uniformly coated with GO, when the weight ratio of PGMA@GO was 1:2 (PGMA: GO). Electrochemical impedance spectroscopy and salt immersion experiments were performed to evaluate the corrosion resistance of the EP composite coatings. Comparing with pure EP and GO/EP coatings, the mechanical properties and anticorrosion properties of coatings were improved after adding PGMA@GO. When the addition amount of PGMA@GO (of 50 g EP) was 1.0 wt% and about 0.67 wt% GO was only needed, the PGMA@GO/EP composite coating possessed a high impedance of 5.68 × 108 Ω cm2 and a low breakpoint frequency of 0.39 Hz for 21-day immersion in 3.5 wt% NaCl solution. The anticorrosion mechanism of PGMA@GO/EP composite coating was also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Boukhvalov, DW, Katsnelson, MI, Lichtenstein, AI, “Hydrogen on Graphene: Electronic Structure, Total Energy, Structural Distortions and Magnetism from First-Principles Calculations.” Phys. Rev. B, 77 (3) 035427 (2008) Boukhvalov, DW, Katsnelson, MI, Lichtenstein, AI, “Hydrogen on Graphene: Electronic Structure, Total Energy, Structural Distortions and Magnetism from First-Principles Calculations.” Phys. Rev. B, 77 (3) 035427 (2008)
2.
Zurück zum Zitat DeAndres, PL, Ramirez, R, Verges, JA, “Strong Covalent Bonding Between Two Graphene Layers.” Phys. Rev. B, 77 (4) 045403 (2008) DeAndres, PL, Ramirez, R, Verges, JA, “Strong Covalent Bonding Between Two Graphene Layers.” Phys. Rev. B, 77 (4) 045403 (2008)
3.
Zurück zum Zitat Reddy, CD, Rajendran, S, Liew, KM, “Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene.” Nanotechnology, 17 (3) 864–870 (2006) Reddy, CD, Rajendran, S, Liew, KM, “Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene.” Nanotechnology, 17 (3) 864–870 (2006)
4.
Zurück zum Zitat Nemes-Incze, P, Osvath, Z, Kamaras, K, Biro, LP, “Anomalies in Thickness Measurements of Graphene and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy.” Carbon, 46 (11) 1435–1442 (2008) Nemes-Incze, P, Osvath, Z, Kamaras, K, Biro, LP, “Anomalies in Thickness Measurements of Graphene and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy.” Carbon, 46 (11) 1435–1442 (2008)
5.
Zurück zum Zitat Li, YY, Xu, YT, Wang, SC, Wang, HC, Li, M, Dai, LZ, “Preparation of Graphene/Polyaniline Nanocomposite by In Situ Intercalation Polymerization and Their Application in Anti-corrosion Coatings.” High Perform. Polym., 31 (9–10) 1226–1237 (2019) Li, YY, Xu, YT, Wang, SC, Wang, HC, Li, M, Dai, LZ, “Preparation of Graphene/Polyaniline Nanocomposite by In Situ Intercalation Polymerization and Their Application in Anti-corrosion Coatings.” High Perform. Polym., 31 (9–10) 1226–1237 (2019)
6.
Zurück zum Zitat Chen, D, Feng, HB, Li, JH, “Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications.” Chem. Rev., 112 (11) 6027–6053 (2012) Chen, D, Feng, HB, Li, JH, “Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications.” Chem. Rev., 112 (11) 6027–6053 (2012)
7.
Zurück zum Zitat Atif, R, Inam, F, “Modeling and Simulation of Graphene Based Polymer Nanocomposites: Advances in the Last Decade.” Graphene, 5 96–142 (2016) Atif, R, Inam, F, “Modeling and Simulation of Graphene Based Polymer Nanocomposites: Advances in the Last Decade.” Graphene, 5 96–142 (2016)
8.
Zurück zum Zitat Nikpour, B, Ramezanzadeh, B, Bahlakeh, G, Mahdavian, M, “Synthesis of Graphene Oxide Nanosheets Functionalized by Green Corrosion Inhibitive Compounds to Fabricate a Protective System.” Corros. Sci., 127 240–259 (2017) Nikpour, B, Ramezanzadeh, B, Bahlakeh, G, Mahdavian, M, “Synthesis of Graphene Oxide Nanosheets Functionalized by Green Corrosion Inhibitive Compounds to Fabricate a Protective System.” Corros. Sci., 127 240–259 (2017)
9.
Zurück zum Zitat Kasaeian, M, Ghasemi, E, Ramezanzadeh, B, Mahdavian, M, Bahlakeh, G, “Construction of a Highly Effective Self-repair Corrosion-Resistant Epoxy Composite Through Impregnation of 1H-Benzimidazole Corrosion Inhibitor Modified Graphene Oxide Nanosheets (GO-BIM).” Corros. Sci., 145 119–134 (2018) Kasaeian, M, Ghasemi, E, Ramezanzadeh, B, Mahdavian, M, Bahlakeh, G, “Construction of a Highly Effective Self-repair Corrosion-Resistant Epoxy Composite Through Impregnation of 1H-Benzimidazole Corrosion Inhibitor Modified Graphene Oxide Nanosheets (GO-BIM).” Corros. Sci., 145 119–134 (2018)
10.
Zurück zum Zitat Krishnamoorthy, K, Jeyasubramanian, K, Premanathan, M, Subbiah, G, Shin, HS, Kim, SJ, “Graphene Oxide Nanopaint.” Carbon, 72 328–337 (2014) Krishnamoorthy, K, Jeyasubramanian, K, Premanathan, M, Subbiah, G, Shin, HS, Kim, SJ, “Graphene Oxide Nanopaint.” Carbon, 72 328–337 (2014)
11.
Zurück zum Zitat Yu, YH, Lin, YY, Lin, CH, Chan, CC, Huang, YC, “High-Performance Polystyrene/Graphene-Based Nanocomposites with Excellent Anti-corrosion Properties.” Polym. Chem., 5 (2) 535–550 (2014) Yu, YH, Lin, YY, Lin, CH, Chan, CC, Huang, YC, “High-Performance Polystyrene/Graphene-Based Nanocomposites with Excellent Anti-corrosion Properties.” Polym. Chem., 5 (2) 535–550 (2014)
12.
Zurück zum Zitat Ramezanzadeh, B, Niroumandrad, S, Ahmadi, A, Mahdavian, M, Moghadam, MHM, “Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating Through Wet Transfer of Amino Functionalized Graphene Oxide.” Corros. Sci., 103 283–304 (2016) Ramezanzadeh, B, Niroumandrad, S, Ahmadi, A, Mahdavian, M, Moghadam, MHM, “Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating Through Wet Transfer of Amino Functionalized Graphene Oxide.” Corros. Sci., 103 283–304 (2016)
13.
Zurück zum Zitat Yu, ZX, Di, HH, Ma, Y, et al., “Fabrication of Graphene Oxide-Alumina Hybrids to Reinforce the Anti-corrosion Performance of Composite Epoxy Coatings.” Appl. Surf. Sci., 351 986–996 (2015) Yu, ZX, Di, HH, Ma, Y, et al., “Fabrication of Graphene Oxide-Alumina Hybrids to Reinforce the Anti-corrosion Performance of Composite Epoxy Coatings.” Appl. Surf. Sci., 351 986–996 (2015)
14.
Zurück zum Zitat Muzammil Ezzah, M, Khan, A, Stuparu, MC, “Post-polymerization Modification Reactions of Poly(glycidyl methacrylate)s.” RSC Adv., 7 (88) 55874–55884 (2017) Muzammil Ezzah, M, Khan, A, Stuparu, MC, “Post-polymerization Modification Reactions of Poly(glycidyl methacrylate)s.” RSC Adv., 7 (88) 55874–55884 (2017)
15.
Zurück zum Zitat Li, QL, Gu, WX, Gao, H, Yang, YW, “Self-assembly and Applications of Poly(glycidyl methacrylate)s and Their Derivatives.” Chem. Commun., 50 (87) 13201–13215 (2014) Li, QL, Gu, WX, Gao, H, Yang, YW, “Self-assembly and Applications of Poly(glycidyl methacrylate)s and Their Derivatives.” Chem. Commun., 50 (87) 13201–13215 (2014)
16.
Zurück zum Zitat Sun, XT, Yang, LR, Xing, HF, et al., “High Capacity Adsorption of Cr(VI) from Aqueous Solution Using Polyethylenimine-Functionalized Poly(glycidyl methacrylate) Microspheres.” Colloid Surf. A, 457 160–168 (2014) Sun, XT, Yang, LR, Xing, HF, et al., “High Capacity Adsorption of Cr(VI) from Aqueous Solution Using Polyethylenimine-Functionalized Poly(glycidyl methacrylate) Microspheres.” Colloid Surf. A, 457 160–168 (2014)
17.
Zurück zum Zitat Zhang, HW, Zhao, R, Chen, ZY, Shangguan, DH, Liu, GQ, “QCM-FIA with PGMA Coating for Dynamic Interaction Study of Heparin and Antithrombin III.” Biosens. Bioelectron., 21 (1) 121–127 (2005) Zhang, HW, Zhao, R, Chen, ZY, Shangguan, DH, Liu, GQ, “QCM-FIA with PGMA Coating for Dynamic Interaction Study of Heparin and Antithrombin III.” Biosens. Bioelectron., 21 (1) 121–127 (2005)
18.
Zurück zum Zitat Koysuren, O, Karaman, M, Ozyurt, D, “Effect of Noncovalent Chemical Modification on the Electrical Conductivity and Tensile Properties of Poly(methyl methacrylate)/Carbon Nanotube Composites.” J. Appl. Polym. Sci., 127 (6) 4557–4563 (2013) Koysuren, O, Karaman, M, Ozyurt, D, “Effect of Noncovalent Chemical Modification on the Electrical Conductivity and Tensile Properties of Poly(methyl methacrylate)/Carbon Nanotube Composites.” J. Appl. Polym. Sci., 127 (6) 4557–4563 (2013)
19.
Zurück zum Zitat Canamero, PF, de la Fuente, JL, Madruga, EL, Fernandez-Garcia, M, “Atom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional Monomer.” Macromol. Chem. Phys., 205 (16) 2221–2228 (2004) Canamero, PF, de la Fuente, JL, Madruga, EL, Fernandez-Garcia, M, “Atom Transfer Radical Polymerization of Glycidyl Methacrylate: A Functional Monomer.” Macromol. Chem. Phys., 205 (16) 2221–2228 (2004)
20.
Zurück zum Zitat Mrlik, M, Ilcikova, M, Plachy, T, Moucka, R, Pavlinek, V, Mosnacek, J, “Tunable Electrorheological Performance of Silicone Oil Suspensions Based on Controllably Reduced Graphene Oxide by Surface Initiated Atom Transfer Radical Polymerization of Poly(glycidyl methacrylate).” J. Ind. Eng. Chem., 57 104–112 (2018) Mrlik, M, Ilcikova, M, Plachy, T, Moucka, R, Pavlinek, V, Mosnacek, J, “Tunable Electrorheological Performance of Silicone Oil Suspensions Based on Controllably Reduced Graphene Oxide by Surface Initiated Atom Transfer Radical Polymerization of Poly(glycidyl methacrylate).” J. Ind. Eng. Chem., 57 104–112 (2018)
21.
Zurück zum Zitat Chuo, T-W, Yeh, J-M, Liu, Y-L, “A Reactive Blend of Electroactive Polymers Exhibiting Synergistic Effects on Self-healing and Anticorrosion Properties.” RSC Adv., 6 (60) 55593–55598 (2016) Chuo, T-W, Yeh, J-M, Liu, Y-L, “A Reactive Blend of Electroactive Polymers Exhibiting Synergistic Effects on Self-healing and Anticorrosion Properties.” RSC Adv., 6 (60) 55593–55598 (2016)
22.
Zurück zum Zitat EI-Sawy, SM, Abu-Ayana, YM, Abdel-Mohdy, FA, “Preparation of Some Nitrogen Containing Polymers/Copolymers for Corrosion Protection.” J. Appl. Sci. Res., 4 (5) 534–544 (2008) EI-Sawy, SM, Abu-Ayana, YM, Abdel-Mohdy, FA, “Preparation of Some Nitrogen Containing Polymers/Copolymers for Corrosion Protection.” J. Appl. Sci. Res., 4 (5) 534–544 (2008)
23.
Zurück zum Zitat Zhang, WC, Sun, Y, Zhang, L, “In Situ Synthesis of Monodisperse Silver Nanoparticles on Sulfhydryl-Functionalized Poly(glycidyl methacrylate) Microspheres for Catalytic Reduction of 4-Nitrophenol.” Ind. Eng. Chem. Res., 54 (25) 6480–6488 (2015) Zhang, WC, Sun, Y, Zhang, L, “In Situ Synthesis of Monodisperse Silver Nanoparticles on Sulfhydryl-Functionalized Poly(glycidyl methacrylate) Microspheres for Catalytic Reduction of 4-Nitrophenol.” Ind. Eng. Chem. Res., 54 (25) 6480–6488 (2015)
24.
Zurück zum Zitat Chen, GF, Lu, JR, Lam, C, Yu, Y, “A Novel Green Synthesis Approach for Polymer Nanocomposites Decorated with Silver Nanoparticles and Their Antibacterial Activity.” Analyst, 139 (22) 5793–5799 (2014) Chen, GF, Lu, JR, Lam, C, Yu, Y, “A Novel Green Synthesis Approach for Polymer Nanocomposites Decorated with Silver Nanoparticles and Their Antibacterial Activity.” Analyst, 139 (22) 5793–5799 (2014)
25.
Zurück zum Zitat Jin, HJ, Choi, HJ, Yoon, SH, Myung, SJ, Shim, SE, “Carbon Nanotube-Adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres.” Chem. Mater., 17 (16) 4034–4037 (2005) Jin, HJ, Choi, HJ, Yoon, SH, Myung, SJ, Shim, SE, “Carbon Nanotube-Adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres.” Chem. Mater., 17 (16) 4034–4037 (2005)
26.
Zurück zum Zitat Cho, MS, Cho, YH, Choi, HJ, Jhon, MS, “Synthesis and Electrorheological Characteristics of Polyaniline-Coated Poly(methyl methacrylate) Microsphere: Size Effect.” Langmuir, 19 (14) 5875–5881 (2003) Cho, MS, Cho, YH, Choi, HJ, Jhon, MS, “Synthesis and Electrorheological Characteristics of Polyaniline-Coated Poly(methyl methacrylate) Microsphere: Size Effect.” Langmuir, 19 (14) 5875–5881 (2003)
27.
Zurück zum Zitat Krizova, J, Spanova, A, Rittich, B, Horak, D, “Magnetic Hydrophilic Methacrylate-Based Polymer Microspheres for Genomic DNA Isolation.” J. Chromatogr. A, 1064 (2) 247–253 (2005) Krizova, J, Spanova, A, Rittich, B, Horak, D, “Magnetic Hydrophilic Methacrylate-Based Polymer Microspheres for Genomic DNA Isolation.” J. Chromatogr. A, 1064 (2) 247–253 (2005)
28.
Zurück zum Zitat Yu, Y, Wu, X-L, Li, Y, et al., “Preparation of Mixed-Mode Chromatography Supports Based on Gigaporous Polymer Microspheres.” Chin. J. Anal. Chem., 44 (12) 1874–1879 (2016) Yu, Y, Wu, X-L, Li, Y, et al., “Preparation of Mixed-Mode Chromatography Supports Based on Gigaporous Polymer Microspheres.” Chin. J. Anal. Chem., 44 (12) 1874–1879 (2016)
29.
Zurück zum Zitat Oh, H, Kim, Y, Kim, J, “Co-curable Poly(glycidyl methacrylate)-Grafted Graphene/Epoxy Composite for Thermal Conductivity Enhancement.” Polymer, 183 121834 (2019) Oh, H, Kim, Y, Kim, J, “Co-curable Poly(glycidyl methacrylate)-Grafted Graphene/Epoxy Composite for Thermal Conductivity Enhancement.” Polymer, 183 121834 (2019)
30.
Zurück zum Zitat Kakaei, K, Hasanpour, K, “Synthesis of Graphene Oxide Nanosheets by Electrochemical Exfoliation of Graphite in Cetyltrimethylammonium Bromide and Its Application for Oxygen Reduction.” J. Mater. Chem. A., 2 (37) 15428–15436 (2014) Kakaei, K, Hasanpour, K, “Synthesis of Graphene Oxide Nanosheets by Electrochemical Exfoliation of Graphite in Cetyltrimethylammonium Bromide and Its Application for Oxygen Reduction.” J. Mater. Chem. A., 2 (37) 15428–15436 (2014)
31.
Zurück zum Zitat Meng, W, Gall, E, Ke, FY, et al., “Structure and Interaction of Graphene Oxide-Cetyltrimethylammonium Bromide Complexation.” J. Phys. Chem. C, 119 (36) 21135–21140 (2015) Meng, W, Gall, E, Ke, FY, et al., “Structure and Interaction of Graphene Oxide-Cetyltrimethylammonium Bromide Complexation.” J. Phys. Chem. C, 119 (36) 21135–21140 (2015)
32.
Zurück zum Zitat Oh, J, Lee, JH, Koo, JC, et al., “Graphene Oxide Porous Paper from Amine-Functionalized Poly(glycidyl methacrylate)/Graphene Oxide Core-Shell Microspheres.” J. Mater. Chem., 20 (41) 9200–9204 (2010) Oh, J, Lee, JH, Koo, JC, et al., “Graphene Oxide Porous Paper from Amine-Functionalized Poly(glycidyl methacrylate)/Graphene Oxide Core-Shell Microspheres.” J. Mater. Chem., 20 (41) 9200–9204 (2010)
33.
Zurück zum Zitat Oh, JS, Luong, ND, Hwang, TS, Hong, JP, Lee, YK, Nam, JD, “In Situ Fabrication of Platinum/Graphene Composite Shell on Polymer Microspheres Through Reactive Self-assembly and In Situ Reduction.” J. Mater. Sci., 48 (3) 1127–1133 (2013) Oh, JS, Luong, ND, Hwang, TS, Hong, JP, Lee, YK, Nam, JD, “In Situ Fabrication of Platinum/Graphene Composite Shell on Polymer Microspheres Through Reactive Self-assembly and In Situ Reduction.” J. Mater. Sci., 48 (3) 1127–1133 (2013)
34.
Zurück zum Zitat Fang, R, Ge, XP, Du, M, et al., “Preparation of Silver/Graphene/Polymer Hybrid Microspheres and the Study of Photocatalytic Degradation.” Colloid Polym. Sci., 292 (4) 985–990 (2014) Fang, R, Ge, XP, Du, M, et al., “Preparation of Silver/Graphene/Polymer Hybrid Microspheres and the Study of Photocatalytic Degradation.” Colloid Polym. Sci., 292 (4) 985–990 (2014)
35.
Zurück zum Zitat Sari, MG, Ramezanzadeh, B, “Epoxy Composite Coating Corrosion Protection Properties Reinforcement Through the Addition of Hydroxyl-Terminated Hyperbranched Polyamide Non-covalently Assembled Graphene Oxide Platforms.” Constr. Build. Mater., 234 117421 (2020) Sari, MG, Ramezanzadeh, B, “Epoxy Composite Coating Corrosion Protection Properties Reinforcement Through the Addition of Hydroxyl-Terminated Hyperbranched Polyamide Non-covalently Assembled Graphene Oxide Platforms.” Constr. Build. Mater., 234 117421 (2020)
36.
Zurück zum Zitat Long, GC, Tang, CY, Wong, KW, et al., “Resolving the Dilemma of Gaining Conductivity but Losing Environmental Friendliness in Producing Polystyrene/Graphene Composites via Optimizing the Matrix-Filler Structure.” Green Chem., 15 (3) 821–828 (2013) Long, GC, Tang, CY, Wong, KW, et al., “Resolving the Dilemma of Gaining Conductivity but Losing Environmental Friendliness in Producing Polystyrene/Graphene Composites via Optimizing the Matrix-Filler Structure.” Green Chem., 15 (3) 821–828 (2013)
37.
Zurück zum Zitat Akbarzadeh, S, Ramezanzadeh, M, Ramezanzadeh, B, Bahlakeh, G, “A Green Assisted Route for the Fabrication of a High-Efficiency Self-healing Anti-corrosion Coating Through Graphene Oxide Nanoplatform Reduction by Tamarindus indiaca Extract.” J. Hazard. Mater., 390 122147 (2020) Akbarzadeh, S, Ramezanzadeh, M, Ramezanzadeh, B, Bahlakeh, G, “A Green Assisted Route for the Fabrication of a High-Efficiency Self-healing Anti-corrosion Coating Through Graphene Oxide Nanoplatform Reduction by Tamarindus indiaca Extract.” J. Hazard. Mater., 390 122147 (2020)
38.
Zurück zum Zitat Liu, Y, Zhang, YH, Duan, LL, et al., “Polystyrene/Graphene Oxide Nanocomposites Synthesized via Pickering Polymerization.” Prog. Org. Coat., 99 23–31 (2016) Liu, Y, Zhang, YH, Duan, LL, et al., “Polystyrene/Graphene Oxide Nanocomposites Synthesized via Pickering Polymerization.” Prog. Org. Coat., 99 23–31 (2016)
39.
Zurück zum Zitat Zhang, WL, Liu, YD, Choi, HJ, “Graphene Oxide Coated Core-Shell Structured Polystyrene Microspheres and Their Electrorheological Characteristics Under Applied Electric Field.” J. Mater. Chem., 21 (19) 6916–6921 (2011) Zhang, WL, Liu, YD, Choi, HJ, “Graphene Oxide Coated Core-Shell Structured Polystyrene Microspheres and Their Electrorheological Characteristics Under Applied Electric Field.” J. Mater. Chem., 21 (19) 6916–6921 (2011)
40.
Zurück zum Zitat Xu, J, Wang, L, Zhu, YF, “Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption.” Langmuir, 28 (22) 8418–8425 (2012) Xu, J, Wang, L, Zhu, YF, “Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption.” Langmuir, 28 (22) 8418–8425 (2012)
41.
Zurück zum Zitat Zhao, JP, Ren, WC, Cheng, HM, “Graphene Sponge for Efficient and Repeatable Adsorption and Desorption of Water Contaminations.” J. Mater. Chem., 22 (38) 20197–20202 (2012) Zhao, JP, Ren, WC, Cheng, HM, “Graphene Sponge for Efficient and Repeatable Adsorption and Desorption of Water Contaminations.” J. Mater. Chem., 22 (38) 20197–20202 (2012)
42.
Zurück zum Zitat Konkena, B, Vasudevan, S, “Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide Through pKa Measurements.” J. Phys. Chem. Lett., 3 (7) 867–872 (2012) Konkena, B, Vasudevan, S, “Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide Through pKa Measurements.” J. Phys. Chem. Lett., 3 (7) 867–872 (2012)
43.
Zurück zum Zitat Li, D, Muller, MB, Gilje, S, Kaner, RB, Wallace, GG, “Processable Aqueous Dispersions of Graphene Nanosheets.” Nat. Nanotechnol., 3 (2) 101–105 (2008) Li, D, Muller, MB, Gilje, S, Kaner, RB, Wallace, GG, “Processable Aqueous Dispersions of Graphene Nanosheets.” Nat. Nanotechnol., 3 (2) 101–105 (2008)
44.
Zurück zum Zitat Chen, C, Qiu, SH, Cui, MJ, et al., “Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene.” Carbon, 114 356–366 (2017) Chen, C, Qiu, SH, Cui, MJ, et al., “Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene.” Carbon, 114 356–366 (2017)
45.
Zurück zum Zitat Chen, Y, Wang, XH, Li, J, Lu, JL, Wang, FS, “Long-Term Anticorrosion Behaviour of Polyaniline on Mild Steel.” Corros. Sci., 49 (7) 3052–3063 (2007) Chen, Y, Wang, XH, Li, J, Lu, JL, Wang, FS, “Long-Term Anticorrosion Behaviour of Polyaniline on Mild Steel.” Corros. Sci., 49 (7) 3052–3063 (2007)
46.
Zurück zum Zitat Qiu, SH, Liu, G, Li, W, Zhao, HC, Wang, LP, “Noncovalent Exfoliation of Graphene and Its Multifunctional Composite Coating with Enhanced Anticorrosion and Tribological Performance.” J. Alloy. Compd., 747 60–70 (2018) Qiu, SH, Liu, G, Li, W, Zhao, HC, Wang, LP, “Noncovalent Exfoliation of Graphene and Its Multifunctional Composite Coating with Enhanced Anticorrosion and Tribological Performance.” J. Alloy. Compd., 747 60–70 (2018)
47.
Zurück zum Zitat Sakhri, A, Perrin, FX, Aragon, E, Lamouric, S, Benaboura, A, “Chlorinated Rubber Paints for Corrosion Prevention of Mild Steel: A Comparison Between Zinc Phosphate and Polyaniline Pigments.” Corros. Sci., 52 (3) 901–909 (2010) Sakhri, A, Perrin, FX, Aragon, E, Lamouric, S, Benaboura, A, “Chlorinated Rubber Paints for Corrosion Prevention of Mild Steel: A Comparison Between Zinc Phosphate and Polyaniline Pigments.” Corros. Sci., 52 (3) 901–909 (2010)
48.
Zurück zum Zitat Ramezanzadeh, B, Ghasemi, E, Mahdavian, M, Changizi, E, Moghadam, MHM, “Covalently-Grafted Graphene Oxide Nanosheets to Improve Barrier and Corrosion Protection Properties of Polyurethane Coatings.” Carbon, 93 555–573 (2015) Ramezanzadeh, B, Ghasemi, E, Mahdavian, M, Changizi, E, Moghadam, MHM, “Covalently-Grafted Graphene Oxide Nanosheets to Improve Barrier and Corrosion Protection Properties of Polyurethane Coatings.” Carbon, 93 555–573 (2015)
49.
Zurück zum Zitat Liu, S, Gu, L, Zhao, HC, Chen, JM, Yu, HB, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 (5) 425–431 (2016) Liu, S, Gu, L, Zhao, HC, Chen, JM, Yu, HB, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 (5) 425–431 (2016)
50.
Zurück zum Zitat Parhizkar, N, Shahrabi, T, Ramezanzadeh, B, “A New Approach for Enhancement of the Corrosion Protection Properties and Interfacial Adhesion Bonds Between the Epoxy Coating and Steel Substrate Through Surface Treatment by Covalently Modified Amino Functionalized Graphene Oxide Film.” Corros. Sci., 123 55–75 (2017) Parhizkar, N, Shahrabi, T, Ramezanzadeh, B, “A New Approach for Enhancement of the Corrosion Protection Properties and Interfacial Adhesion Bonds Between the Epoxy Coating and Steel Substrate Through Surface Treatment by Covalently Modified Amino Functionalized Graphene Oxide Film.” Corros. Sci., 123 55–75 (2017)
51.
Zurück zum Zitat Zheng, HP, Shao, YW, Wang, YQ, Meng, GZ, Liu, B, “Reinforcing the Corrosion Protection Property of Epoxy Coating by Using Graphene Oxide–Poly(urea–formaldehyde) Composites.” Corros. Sci., 123 267–277 (2017) Zheng, HP, Shao, YW, Wang, YQ, Meng, GZ, Liu, B, “Reinforcing the Corrosion Protection Property of Epoxy Coating by Using Graphene Oxide–Poly(urea–formaldehyde) Composites.” Corros. Sci., 123 267–277 (2017)
52.
Zurück zum Zitat Liu, X, Xiong, J, Lv, Y, Zuo, Y, “Study on Corrosion Electrochemical Behavior of Several Different Coating Systems by EIS.” Prog. Org. Coat., 64 (4) 497–503 (2009) Liu, X, Xiong, J, Lv, Y, Zuo, Y, “Study on Corrosion Electrochemical Behavior of Several Different Coating Systems by EIS.” Prog. Org. Coat., 64 (4) 497–503 (2009)
53.
Zurück zum Zitat Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Polyaniline-Cerium Oxide (PAni-CeO2) Coated Graphene Oxide for Enhancement of Epoxy Coating Corrosion Protection Performance on Mild Steel.” Corros. Sci., 137 111–126 (2018) Ramezanzadeh, B, Bahlakeh, G, Ramezanzadeh, M, “Polyaniline-Cerium Oxide (PAni-CeO2) Coated Graphene Oxide for Enhancement of Epoxy Coating Corrosion Protection Performance on Mild Steel.” Corros. Sci., 137 111–126 (2018)
Metadaten
Titel
Fabrication of graphene-coated poly(glycidyl methacrylate) microspheres by electrostatic interaction and their application in epoxy anticorrosion coatings
verfasst von
Meng Li
Yiyi Li
Jiatian Zhang
Dandan Zhang
Jie Li
Kaibin He
Yiting Xu
Birong Zeng
Lizong Dai
Publikationsdatum
11.11.2020
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2021
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-020-00409-1

Weitere Artikel der Ausgabe 2/2021

Journal of Coatings Technology and Research 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.