Skip to main content
Erschienen in: Evolutionary Intelligence 4/2020

19.03.2020 | Research Paper

Single layer Chebyshev neural network model with regression-based weights for solving nonlinear ordinary differential equations

verfasst von: S. Chakraverty, Susmita Mall

Erschienen in: Evolutionary Intelligence | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this investigation, a novel single layer Functional Link Neural Network namely, Chebyshev artificial neural network (ChANN) model with regression-based weights has been developed to handle ordinary differential equations. In ChANN, the hidden layer is removed by an artificial expansion block of the input patterns by using Chebyshev polynomials. Thus the technique is more effectual than the multilayer ANN. Initial weights from the input layer to the output layer are taken by a regression-based model. Here, feed-forward structure and back-propagation algorithm of the unsupervised version have been utilized to make the error values minimal. Numerical examples and comparisons with other methods exhibit the superior behavior of this technique.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ricardo HJ (2009) A modern introduction to differential equations, 2nd edn. Elsevier, New YorkMATH Ricardo HJ (2009) A modern introduction to differential equations, 2nd edn. Elsevier, New YorkMATH
2.
Zurück zum Zitat Wazwaz AM (2002) Partial differential equations methods and applications. CRC Press, Boca RatonMATH Wazwaz AM (2002) Partial differential equations methods and applications. CRC Press, Boca RatonMATH
3.
Zurück zum Zitat Boyce WE, Diprima RC (2001) Elementary differential equations and boundary value problems. Wiley, New YorkMATH Boyce WE, Diprima RC (2001) Elementary differential equations and boundary value problems. Wiley, New YorkMATH
4.
Zurück zum Zitat Pinsky MA (2003) Partial differential equations and boundary-value problems with applications. Waveland Press, Long Grove Pinsky MA (2003) Partial differential equations and boundary-value problems with applications. Waveland Press, Long Grove
5.
Zurück zum Zitat Pinchover Y, Rubinsteinan J (2005) Introduction to partial differential equations. Cambridge University Press, Cambridge Pinchover Y, Rubinsteinan J (2005) Introduction to partial differential equations. Cambridge University Press, Cambridge
6.
Zurück zum Zitat Douglas J, Jones BF (1963) Predictor–corrector methods for nonlinear parabolic differential equations. J Ind Appl Math 11:195–204MathSciNetMATH Douglas J, Jones BF (1963) Predictor–corrector methods for nonlinear parabolic differential equations. J Ind Appl Math 11:195–204MathSciNetMATH
7.
Zurück zum Zitat Smith G (1978) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, Oxford Smith G (1978) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, Oxford
8.
Zurück zum Zitat Wambecq A (1978) Rational Runge–Kutta methods for solving systems of ordinary differential equations. Computing 20:333–342MathSciNetMATH Wambecq A (1978) Rational Runge–Kutta methods for solving systems of ordinary differential equations. Computing 20:333–342MathSciNetMATH
9.
Zurück zum Zitat Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New YorkMATH Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New YorkMATH
10.
Zurück zum Zitat Conte SD, Boor C (1980) Elementary numerical analysis: an algorithmic approach. McGraw-Hill Press, New YorkMATH Conte SD, Boor C (1980) Elementary numerical analysis: an algorithmic approach. McGraw-Hill Press, New YorkMATH
11.
Zurück zum Zitat Lee H, Kang I (1990) Neural algorithms for solving differential equations. J Comput Phys 91:110–117MathSciNetMATH Lee H, Kang I (1990) Neural algorithms for solving differential equations. J Comput Phys 91:110–117MathSciNetMATH
12.
Zurück zum Zitat Jr Meade AJ, Fernandez AA (1994) The numerical solution of linear ordinary differential equations by feed forward neural networks. Math Comput Model 19:1–25 Jr Meade AJ, Fernandez AA (1994) The numerical solution of linear ordinary differential equations by feed forward neural networks. Math Comput Model 19:1–25
13.
Zurück zum Zitat Jr Meade AJ, Fernandez AA (1994) Solution of nonlinear ordinary differential equations by feed forward neural networks. Math Comput Model 20:19–44 Jr Meade AJ, Fernandez AA (1994) Solution of nonlinear ordinary differential equations by feed forward neural networks. Math Comput Model 20:19–44
14.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000 Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000
15.
Zurück zum Zitat Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62:3796–3811MathSciNetMATH Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput Math Appl 62:3796–3811MathSciNetMATH
16.
Zurück zum Zitat Ibraheem KI, Khalaf BM (2011) Shooting neural networks algorithm for solving boundary value problems in ODEs. Appl Appl Math 61:927–1941MathSciNetMATH Ibraheem KI, Khalaf BM (2011) Shooting neural networks algorithm for solving boundary value problems in ODEs. Appl Appl Math 61:927–1941MathSciNetMATH
17.
Zurück zum Zitat Malek A, Beidokhti RS (2006) Numerical solution for high order differential equations, using a hybrid neural network-optimization method. Appl Math Comput 18:260–271MathSciNetMATH Malek A, Beidokhti RS (2006) Numerical solution for high order differential equations, using a hybrid neural network-optimization method. Appl Math Comput 18:260–271MathSciNetMATH
18.
Zurück zum Zitat Yazdi HS, Pakdaman M, Modaghegh H (2011) Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Nerocomputing 74:2062–2071 Yazdi HS, Pakdaman M, Modaghegh H (2011) Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Nerocomputing 74:2062–2071
19.
Zurück zum Zitat Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural network. Neurocmputing 72:2385–2391 Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural network. Neurocmputing 72:2385–2391
20.
Zurück zum Zitat Namatame A, Ueda N (1992) Pattern classification with Chebyshev neural network. Int J Neural Netw 3:23–31 Namatame A, Ueda N (1992) Pattern classification with Chebyshev neural network. Int J Neural Netw 3:23–31
21.
Zurück zum Zitat Patra JC (2011) Chebyshev neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers 26:132–140 Patra JC (2011) Chebyshev neural network-based model for dual-junction solar cells. IEEE Trans Energy Convers 26:132–140
22.
Zurück zum Zitat Purwar S, Kar IN, Jha AN (2007) Online system identification of complex systems using Chebyshev neural network. Appl Soft Comput 7:364–372 Purwar S, Kar IN, Jha AN (2007) Online system identification of complex systems using Chebyshev neural network. Appl Soft Comput 7:364–372
23.
Zurück zum Zitat Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural network. IEEE Trans Syst Man Cybern Part B Cybern 32(4):505–511 Patra JC, Kot AC (2002) Nonlinear dynamic system identification using Chebyshev functional link artificial neural network. IEEE Trans Syst Man Cybern Part B Cybern 32(4):505–511
24.
Zurück zum Zitat Yang SS, Tseng CS (1996) An orthogonal neural network for function approximation. IEEE Trans Syst Man Cybern Part B 26(5):779–785 Yang SS, Tseng CS (1996) An orthogonal neural network for function approximation. IEEE Trans Syst Man Cybern Part B 26(5):779–785
25.
Zurück zum Zitat Patra JC, Juhola M, Meher PK (2008) Intelligent sensors using computationally efficient Chebyshev neural networks. IET Sci Meas Technol 2:68–75 Patra JC, Juhola M, Meher PK (2008) Intelligent sensors using computationally efficient Chebyshev neural networks. IET Sci Meas Technol 2:68–75
26.
Zurück zum Zitat Bhat RB, Chakravety S (2004) Numerical analysis in engineering. Alpha Science Int Ltd, Oxford Bhat RB, Chakravety S (2004) Numerical analysis in engineering. Alpha Science Int Ltd, Oxford
27.
Zurück zum Zitat Chakraverty S, Singh VP, Sharma RK (2006) Regression based weight generation algorithm in neural network for estimation of frequencies of vibrating plates. J Comput Methods Appl Mech Eng 195:4194–4202MATH Chakraverty S, Singh VP, Sharma RK (2006) Regression based weight generation algorithm in neural network for estimation of frequencies of vibrating plates. J Comput Methods Appl Mech Eng 195:4194–4202MATH
28.
Zurück zum Zitat Chakraverty S, Singh VP, Sharma RK, Sharma GK (2009) Modelling vibration frequencies of annular plates by regression based neural Network. Appl Soft Comput 9:439–447 Chakraverty S, Singh VP, Sharma RK, Sharma GK (2009) Modelling vibration frequencies of annular plates by regression based neural Network. Appl Soft Comput 9:439–447
29.
Zurück zum Zitat Mall S, Chakraverty S (2013) Comparison of artificial neural network architecture in solving ordinary differential equations. Adv Artif Neural Syst 2013:1–24MATH Mall S, Chakraverty S (2013) Comparison of artificial neural network architecture in solving ordinary differential equations. Adv Artif Neural Syst 2013:1–24MATH
30.
Zurück zum Zitat Mall S, Chakraverty S (2013) Regression-based neural network training for the solution of ordinary differential equations. Int J Math Model Numer Optim 4:136–149MATH Mall S, Chakraverty S (2013) Regression-based neural network training for the solution of ordinary differential equations. Int J Math Model Numer Optim 4:136–149MATH
31.
Zurück zum Zitat Chakraverty S, Mall S (2014) Regression based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25:585–594 Chakraverty S, Mall S (2014) Regression based weight generation algorithm in neural network for solution of initial and boundary value problems. Neural Comput Appl 25:585–594
32.
Zurück zum Zitat Chakraverty S, Mall S (2017) Artificial neural networks for engineers and scientists: solving ordinary differential equations. Taylor and Francis, CRC Press, Boca RatonMATH Chakraverty S, Mall S (2017) Artificial neural networks for engineers and scientists: solving ordinary differential equations. Taylor and Francis, CRC Press, Boca RatonMATH
33.
Zurück zum Zitat Suli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, CambridgeMATH Suli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, CambridgeMATH
34.
Zurück zum Zitat Karris ST (2004) Numerical analysis: using MATLAB and spreadsheets. Orchard Publication, Noida Karris ST (2004) Numerical analysis: using MATLAB and spreadsheets. Orchard Publication, Noida
35.
Zurück zum Zitat Davis HT (1962) Introduction to nonlinear differential and integral equations. Dover publications Inc, New York Davis HT (1962) Introduction to nonlinear differential and integral equations. Dover publications Inc, New York
36.
Zurück zum Zitat Wazwaz AM (2005) Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Appl Math Comput 161:543–560MathSciNetMATH Wazwaz AM (2005) Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. Appl Math Comput 161:543–560MathSciNetMATH
37.
Zurück zum Zitat Chowdhury MSH, Hashim I (2007) Solutions of a class of singular second order initial value problems by homotopy-perturbation method. Phys Lett A 365:439–447MathSciNetMATH Chowdhury MSH, Hashim I (2007) Solutions of a class of singular second order initial value problems by homotopy-perturbation method. Phys Lett A 365:439–447MathSciNetMATH
38.
Zurück zum Zitat Ramos JI (2005) Linearization techniques for singular initial-value problems of ordinary differential equations. Appl Math Comput 16:1525–1542MathSciNet Ramos JI (2005) Linearization techniques for singular initial-value problems of ordinary differential equations. Appl Math Comput 16:1525–1542MathSciNet
39.
Zurück zum Zitat Liao SJ (2003) A new analytical algorithm of Lane–Emden type equations. Appl Math Comput 142:1–16MathSciNetMATH Liao SJ (2003) A new analytical algorithm of Lane–Emden type equations. Appl Math Comput 142:1–16MathSciNetMATH
40.
Zurück zum Zitat Dehghan M, Shakeri F (2008) Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron 13:53–59 Dehghan M, Shakeri F (2008) Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron 13:53–59
41.
Zurück zum Zitat Govinder KS, Leach PGL (2007) Integrability analysis of the Emden–Fowler equation. J Nonlinear Math Phys 14:435–453MathSciNetMATH Govinder KS, Leach PGL (2007) Integrability analysis of the Emden–Fowler equation. J Nonlinear Math Phys 14:435–453MathSciNetMATH
42.
Zurück zum Zitat Singh OP, Pandey RK, Singh VK (2009) Analytical algorithm of Lane–Emden type equation arising in astrophysics using modified homotopy analysis method. Comput Phys Commun 180:1116–1124MATH Singh OP, Pandey RK, Singh VK (2009) Analytical algorithm of Lane–Emden type equation arising in astrophysics using modified homotopy analysis method. Comput Phys Commun 180:1116–1124MATH
43.
Zurück zum Zitat Loia V, Parente D, Pedrycz W, Tomasiello S (2018) A granular functional network with delay: some dynamical properties and application to the sign prediction in social networks. Neurocomputing 321:61–71 Loia V, Parente D, Pedrycz W, Tomasiello S (2018) A granular functional network with delay: some dynamical properties and application to the sign prediction in social networks. Neurocomputing 321:61–71
44.
Zurück zum Zitat Wei X, Zuou Y, Luo Q, Huang H (2015) Functional network for nonlinear regression based on extreme learning machine. J Comput Theor Nanosci 12(10):3662–3666 Wei X, Zuou Y, Luo Q, Huang H (2015) Functional network for nonlinear regression based on extreme learning machine. J Comput Theor Nanosci 12(10):3662–3666
45.
Zurück zum Zitat EI-Sebakhy EA, Asparouhov O, Abdulraheem AA, Al-Majed AA, Wu D, Latinski K, Raharja I (2012) Functional networks as a new data mining predictive paradigm to predict permeability in a carbonate reservoir. Expert Syst Appl 39(12):10359–10375 EI-Sebakhy EA, Asparouhov O, Abdulraheem AA, Al-Majed AA, Wu D, Latinski K, Raharja I (2012) Functional networks as a new data mining predictive paradigm to predict permeability in a carbonate reservoir. Expert Syst Appl 39(12):10359–10375
46.
Zurück zum Zitat Tomasiello S (2011) A functional network to predict fresh and hardened properties of self-compacting concretes. Int J Numer Methods Biomed Eng 27(6):840–847MATH Tomasiello S (2011) A functional network to predict fresh and hardened properties of self-compacting concretes. Int J Numer Methods Biomed Eng 27(6):840–847MATH
47.
Zurück zum Zitat Hadian-Rasanan AH, Rahmati D, Gorgin S, Parand K (2020) A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation. New Astron 75:101307 Hadian-Rasanan AH, Rahmati D, Gorgin S, Parand K (2020) A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation. New Astron 75:101307
48.
Zurück zum Zitat Piscopo ML, Spannowsky M, Waite P (2019) Solving differential equations with neural networks: applications to the calculation of cosmological phase transitions. Phys Rev D 100:1–12MathSciNet Piscopo ML, Spannowsky M, Waite P (2019) Solving differential equations with neural networks: applications to the calculation of cosmological phase transitions. Phys Rev D 100:1–12MathSciNet
49.
Zurück zum Zitat Waheeb W, Ghazali RA (2019) New genetically optimized tensor product functional link neural network: an application to the daily exchange rate forecasting. Evol Intell 12(4):593–608 Waheeb W, Ghazali RA (2019) New genetically optimized tensor product functional link neural network: an application to the daily exchange rate forecasting. Evol Intell 12(4):593–608
50.
Zurück zum Zitat Jena PR, Majhi R (2018) An application of artificial neural network classifier to analyze the behavioral traits of smallholder farmers in Kenya. Evol Intell 11:1–11 Jena PR, Majhi R (2018) An application of artificial neural network classifier to analyze the behavioral traits of smallholder farmers in Kenya. Evol Intell 11:1–11
Metadaten
Titel
Single layer Chebyshev neural network model with regression-based weights for solving nonlinear ordinary differential equations
verfasst von
S. Chakraverty
Susmita Mall
Publikationsdatum
19.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Evolutionary Intelligence / Ausgabe 4/2020
Print ISSN: 1864-5909
Elektronische ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00383-y

Weitere Artikel der Ausgabe 4/2020

Evolutionary Intelligence 4/2020 Zur Ausgabe

Premium Partner