Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2020

04.02.2020 | Original Research

Dynamical analysis of a fuzzy phytoplankton–zooplankton model with refuge, fishery protection and harvesting

verfasst von: Xin-You Meng, Yu-Qian Wu

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a singular phytoplankton–zooplankton model with fuzzy parameters, refuge, fishery protection and harvesting is studied by regarding the imprecise biological parameters as one form of triangular fuzzy number. By using the utility function method, the transformed differential equation is reduced to a differential equation. In absence of economic profit, the existence of positive equilibria, local stability and global stability for the interior equilibrium of the present differential system are discussed, the conditions of Hopf bifurcation occurring at the positive equilibrium are given, and the corresponding nonlinear feedback controller is designed to eliminate Hopf bifurcation. In presence of economic profit, the corresponding differential algebraic model is proposed and some conditions of the existence of the interior equilibrium are derived. By regarding economic profit as bifurcation parameter, singular induced bifurcation occurring is investigated, and a linear controller is designed to remove such bifurcation. Furthermore, Pontryagin’s maximum principle has been used to obtain optimal harvesting policy to maximize the benefit as well as conservation of the ecosystem. Finally, some numerical simulations are given to demonstrate our theoretical results after each part. Results show that imprecise parameters not only affect the interior equilibrium and the bionomic equilibrium of system, but also affect the critical value of bifurcation and branch range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arrow, K., Kurz, M.: Public Investment, the Rate of Return and Optimal Fiscal Policy. John Hopkins, Baltimore (1970) Arrow, K., Kurz, M.: Public Investment, the Rate of Return and Optimal Fiscal Policy. John Hopkins, Baltimore (1970)
2.
Zurück zum Zitat Chambers, M.: The mathematical theory of optimal processes. J. Oper. Res. Soc. 16(4), 493–494 (1965)CrossRef Chambers, M.: The mathematical theory of optimal processes. J. Oper. Res. Soc. 16(4), 493–494 (1965)CrossRef
3.
Zurück zum Zitat Chen, Y., Chang, Y., Chen, B.: Fuzzy slutions to partial differential equations: adaptive approach. IEEE Trans. Fuzzy Syst. 17(1), 116–127 (2009)CrossRef Chen, Y., Chang, Y., Chen, B.: Fuzzy slutions to partial differential equations: adaptive approach. IEEE Trans. Fuzzy Syst. 17(1), 116–127 (2009)CrossRef
4.
Zurück zum Zitat Duinker, J., Wefer, G.: Das CO\(_{2}\)-problem und die Rolle des Ozeans. Naturwissenschaften 81(6), 237–242 (1994)CrossRef Duinker, J., Wefer, G.: Das CO\(_{2}\)-problem und die Rolle des Ozeans. Naturwissenschaften 81(6), 237–242 (1994)CrossRef
5.
Zurück zum Zitat Gonzalez-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(1), 135–146 (2003)CrossRef Gonzalez-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(1), 135–146 (2003)CrossRef
6.
Zurück zum Zitat Gordon, H.S.: The economic theory of a common-property resource: the fishery. J. Polit. Econ. 62(2), 124–142 (1954)CrossRef Gordon, H.S.: The economic theory of a common-property resource: the fishery. J. Polit. Econ. 62(2), 124–142 (1954)CrossRef
7.
Zurück zum Zitat Hui, Y., Yu, D., Yin, S., Xia, B.: Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters. Mech. Syst. Signal Proc. 102, 329–345 (2018)CrossRef Hui, Y., Yu, D., Yin, S., Xia, B.: Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters. Mech. Syst. Signal Proc. 102, 329–345 (2018)CrossRef
8.
Zurück zum Zitat Jafari, R., Yu, W. (eds.): Uncertainty nonlinear systems modeling with fuzzy equations. In: 2015 IEEE 16th International Conference on Information Reuse and Integration, pp. 182-188. San Francisco (2015) Jafari, R., Yu, W. (eds.): Uncertainty nonlinear systems modeling with fuzzy equations. In: 2015 IEEE 16th International Conference on Information Reuse and Integration, pp. 182-188. San Francisco (2015)
9.
Zurück zum Zitat Jafari, R., Yu, W.: Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math. Probl. Eng. 2017, 8594738 (2017)MathSciNetCrossRef Jafari, R., Yu, W.: Fuzzy modeling for uncertainty nonlinear systems with fuzzy equations. Math. Probl. Eng. 2017, 8594738 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Jana, D., Dolai, P., Pal, A., Samanta, P.: On the stability and Hopf-bifurcation of a multi-delayed competitive population system affected by toxic substances with imprecise biological parameters. Model. Earth Syst. Environ. 2(3), 110 (2016)CrossRef Jana, D., Dolai, P., Pal, A., Samanta, P.: On the stability and Hopf-bifurcation of a multi-delayed competitive population system affected by toxic substances with imprecise biological parameters. Model. Earth Syst. Environ. 2(3), 110 (2016)CrossRef
11.
Zurück zum Zitat Jang, S., Baglama, J., Wu, L.: Dynamics of phytoplankton–zooplankton systems with toxin producing phytoplankton. Appl. Math. Comput. 227, 717–740 (2014)MathSciNetMATH Jang, S., Baglama, J., Wu, L.: Dynamics of phytoplankton–zooplankton systems with toxin producing phytoplankton. Appl. Math. Comput. 227, 717–740 (2014)MathSciNetMATH
12.
Zurück zum Zitat Jia, D., Zhang, T., Yuan, S.: Pattern dynamics of a diffusive toxin producing phytoplankton–zooplankton model with three-dimensional patch. Int. J. Bifurc. Chaos 29(4), 1930011 (2019)MathSciNetMATHCrossRef Jia, D., Zhang, T., Yuan, S.: Pattern dynamics of a diffusive toxin producing phytoplankton–zooplankton model with three-dimensional patch. Int. J. Bifurc. Chaos 29(4), 1930011 (2019)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Ko, W., Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231(2), 534–550 (2006)MathSciNetMATHCrossRef Ko, W., Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231(2), 534–550 (2006)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Li, J., Huang, P., Zhang, R.: Modeling the refuge effect of submerged macrophytes in ecological dynamics of shallow lakes: a new model of fish functional response. Ecol. Model. 221(17), 2076–2085 (2010)CrossRef Li, J., Huang, P., Zhang, R.: Modeling the refuge effect of submerged macrophytes in ecological dynamics of shallow lakes: a new model of fish functional response. Ecol. Model. 221(17), 2076–2085 (2010)CrossRef
15.
Zurück zum Zitat Li, J., Song, Y., Wan, H.: Dynamical analysis of a toxin-producing phytoplankton–zooplankton model with refuge. Math. Biosci. Eng. 14(2), 529–557 (2017)MathSciNetMATH Li, J., Song, Y., Wan, H.: Dynamical analysis of a toxin-producing phytoplankton–zooplankton model with refuge. Math. Biosci. Eng. 14(2), 529–557 (2017)MathSciNetMATH
16.
Zurück zum Zitat Liao, T., Yu, H., Zhao, M.: Dynamics of a delayed phytoplankton–zooplankton system with Crowley–Martin functional response. Adv. Difference Equ. 2017, 5 (2017)MathSciNetMATHCrossRef Liao, T., Yu, H., Zhao, M.: Dynamics of a delayed phytoplankton–zooplankton system with Crowley–Martin functional response. Adv. Difference Equ. 2017, 5 (2017)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Liu, C., Zhang, Q., Duan, X.: Dynamical behavior in a harvested differential-algebraic prey–predator model with discrete time delay and stage structure. J. Frank. Inst. 346(10), 1038–1059 (2009)MathSciNetMATHCrossRef Liu, C., Zhang, Q., Duan, X.: Dynamical behavior in a harvested differential-algebraic prey–predator model with discrete time delay and stage structure. J. Frank. Inst. 346(10), 1038–1059 (2009)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Long, H.: On random fuzzy fractional partial integro-differential equations under Caputo generalized Hukuhara differentiability. Comput. Appl. Math. 37(3), 2738–2765 (2018)MathSciNetMATHCrossRef Long, H.: On random fuzzy fractional partial integro-differential equations under Caputo generalized Hukuhara differentiability. Comput. Appl. Math. 37(3), 2738–2765 (2018)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Long, H., Son, N., Tam, H.: Gloal existence of solutions to fuzzy partial hyperbolic functional differential equations with generalized Hukuhara derivatives. J. Intell. Fuzzy Syst. 29(2), 939–954 (2015)MATHCrossRef Long, H., Son, N., Tam, H.: Gloal existence of solutions to fuzzy partial hyperbolic functional differential equations with generalized Hukuhara derivatives. J. Intell. Fuzzy Syst. 29(2), 939–954 (2015)MATHCrossRef
20.
Zurück zum Zitat Lv, Y., Pei, Y., Gao, S., Li, C.: Harvesting of a phytoplankton–zooplankton model. Nonlinear Anal. Real World Appl. 11(5), 3608–3619 (2010)MathSciNetMATHCrossRef Lv, Y., Pei, Y., Gao, S., Li, C.: Harvesting of a phytoplankton–zooplankton model. Nonlinear Anal. Real World Appl. 11(5), 3608–3619 (2010)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Ma, Z., Wang, S., Wang, T., Tang, H.: Stability analysis of prey–predator system with Holling type functional response and prey refuge. Adv. Differ. Equ. 2017, 243 (2017)MathSciNetMATHCrossRef Ma, Z., Wang, S., Wang, T., Tang, H.: Stability analysis of prey–predator system with Holling type functional response and prey refuge. Adv. Differ. Equ. 2017, 243 (2017)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Meng, X., Li, J.: Stability and Hopf bifurcation analysis of a delayed phytoplankton–zooplankton model with Allee effect and linear harvesting. Math. Biosci. Eng. 17(3), 1973–2002 (2020)CrossRef Meng, X., Li, J.: Stability and Hopf bifurcation analysis of a delayed phytoplankton–zooplankton model with Allee effect and linear harvesting. Math. Biosci. Eng. 17(3), 1973–2002 (2020)CrossRef
23.
Zurück zum Zitat Meng, X., Huo, H., Zhang, X.: Stability and global Hopf bifurcation in a Leslie–Gower predator–prey model with stage structure for prey. J. Appl. Math. Comput. 60(1), 1–25 (2019)MathSciNetMATHCrossRef Meng, X., Huo, H., Zhang, X.: Stability and global Hopf bifurcation in a Leslie–Gower predator–prey model with stage structure for prey. J. Appl. Math. Comput. 60(1), 1–25 (2019)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Meng, X., Wang, J.: Analysis of a delayed diffusive model with Beddington–Deangelis functional response. Int. J. Bifurc. 12(4), 1950047 (2019)MathSciNetMATH Meng, X., Wang, J.: Analysis of a delayed diffusive model with Beddington–Deangelis functional response. Int. J. Bifurc. 12(4), 1950047 (2019)MathSciNetMATH
25.
Zurück zum Zitat Meng, X., Wu, Y.: Bifurcation and control in a singular phytoplankton–zooplankton–fish model with nonlinear fish harvesting and taxation. Int. J. Bifurc. Chaos 28(3), 1860042 (2018)MathSciNetMATHCrossRef Meng, X., Wu, Y.: Bifurcation and control in a singular phytoplankton–zooplankton–fish model with nonlinear fish harvesting and taxation. Int. J. Bifurc. Chaos 28(3), 1860042 (2018)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Meng, X., Wu, Y.: Bifurcation analysis in a singular Beddington–Deangelis predator–prey model with two delays and nonlinear predator harvesting. Math. Biosci. Eng. 16(4), 2668–2696 (2019)MathSciNetCrossRef Meng, X., Wu, Y.: Bifurcation analysis in a singular Beddington–Deangelis predator–prey model with two delays and nonlinear predator harvesting. Math. Biosci. Eng. 16(4), 2668–2696 (2019)MathSciNetCrossRef
27.
Zurück zum Zitat Mizukoshi, M., Barros, L., Bassanezi, R.: Stability of fuzzy dynamic systems. Int. J. Unc. Fuzz. Knowl. Based Syst. 17(1), 69–83 (2009)MathSciNetMATHCrossRef Mizukoshi, M., Barros, L., Bassanezi, R.: Stability of fuzzy dynamic systems. Int. J. Unc. Fuzz. Knowl. Based Syst. 17(1), 69–83 (2009)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Moore, R.: Interval Analysis. Prentice-Hall, London (1966)MATH Moore, R.: Interval Analysis. Prentice-Hall, London (1966)MATH
29.
30.
Zurück zum Zitat Pal, D., Mahapatra, G.: A bioeconomic modeling of two prey and one-predator fishery model with optimal harvesting policy through hybridization approach. Appl. Math. Comput. 242, 748–763 (2014)MathSciNetMATH Pal, D., Mahapatra, G.: A bioeconomic modeling of two prey and one-predator fishery model with optimal harvesting policy through hybridization approach. Appl. Math. Comput. 242, 748–763 (2014)MathSciNetMATH
31.
Zurück zum Zitat Pal, D., Mahapatra, G., Samanta, G.: Optimal harvesting of prey–predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241(2), 181–187 (2013)MathSciNetMATHCrossRef Pal, D., Mahapatra, G., Samanta, G.: Optimal harvesting of prey–predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241(2), 181–187 (2013)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Pal, D., Mahapatra, G., Samanta, G.: Bifurcation analysis of predator–prey model with time delay and harvesting efforts using interval parameter. Int. J. Dyn. Control 3(3), 199–209 (2015)MathSciNetCrossRef Pal, D., Mahapatra, G., Samanta, G.: Bifurcation analysis of predator–prey model with time delay and harvesting efforts using interval parameter. Int. J. Dyn. Control 3(3), 199–209 (2015)MathSciNetCrossRef
33.
Zurück zum Zitat Pal, D., Mahapatra, G., Samanta, G.: Stability and bionomic analysis of fuzzy parameter based prey–predator harvesting model using UFM. Nonlinear Dyn. 79(3), 1939–1955 (2015)MATHCrossRef Pal, D., Mahapatra, G., Samanta, G.: Stability and bionomic analysis of fuzzy parameter based prey–predator harvesting model using UFM. Nonlinear Dyn. 79(3), 1939–1955 (2015)MATHCrossRef
34.
Zurück zum Zitat Pal, D., Mahapatra, G., Samanta, G.: New approach for stability and bifurcation analysis on predator–prey harvesting model for interval biological parameters with time delays. Comput. Appl. Math. 27(3), 3145–3171 (2018)MathSciNetMATHCrossRef Pal, D., Mahapatra, G., Samanta, G.: New approach for stability and bifurcation analysis on predator–prey harvesting model for interval biological parameters with time delays. Comput. Appl. Math. 27(3), 3145–3171 (2018)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Panja, P., Mondal, S.: Stability analysis of coexistence of three species prey–predator model. Nonlinear Dyn. 81(1–2), 373–382 (2015)MathSciNetMATHCrossRef Panja, P., Mondal, S.: Stability analysis of coexistence of three species prey–predator model. Nonlinear Dyn. 81(1–2), 373–382 (2015)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal. Real World Appl. 10(1), 314–332 (2008)MathSciNetMATHCrossRef Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal. Real World Appl. 10(1), 314–332 (2008)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Sarkar, R., Chattopadhyay, J.: The role of environmental stochasticity in a toxic phytoplankton–nontoxic phytoplankton zooplankton system. Environmetrics 14(8), 775–792 (2003)CrossRef Sarkar, R., Chattopadhyay, J.: The role of environmental stochasticity in a toxic phytoplankton–nontoxic phytoplankton zooplankton system. Environmetrics 14(8), 775–792 (2003)CrossRef
39.
Zurück zum Zitat Schindler, D., Scheuerell, M.: Habitat coupling in lake ecosystems. Oikos 98(2), 177–189 (2002)CrossRef Schindler, D., Scheuerell, M.: Habitat coupling in lake ecosystems. Oikos 98(2), 177–189 (2002)CrossRef
41.
Zurück zum Zitat Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301(1), 1–21 (2005)MathSciNetMATHCrossRef Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301(1), 1–21 (2005)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Tripathi, J., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80(1–2), 177–196 (2015)MathSciNetMATHCrossRef Tripathi, J., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80(1–2), 177–196 (2015)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Venkatasubramani, V., Schattler, H., Zaborszky, J.: Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Trans. Autom. Control 40(12), 1992–2013 (1995)MathSciNetMATHCrossRef Venkatasubramani, V., Schattler, H., Zaborszky, J.: Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Trans. Autom. Control 40(12), 1992–2013 (1995)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Vernic, R.: On risk measures and capital allocation for distributions depending on parameters with interval or fuzzy uncertainty. Appl. Soft Comput. 64, 199–215 (2018)CrossRef Vernic, R.: On risk measures and capital allocation for distributions depending on parameters with interval or fuzzy uncertainty. Appl. Soft Comput. 64, 199–215 (2018)CrossRef
45.
Zurück zum Zitat Wang, Q., Liu, Z., Zhang, X., Cheke, R.: Incorporating prey refuge into a predator–prey system with imprecise parameter estimates. Comp. Appl. Math. 36(2), 1067–1084 (2017)MathSciNetMATHCrossRef Wang, Q., Liu, Z., Zhang, X., Cheke, R.: Incorporating prey refuge into a predator–prey system with imprecise parameter estimates. Comp. Appl. Math. 36(2), 1067–1084 (2017)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Wang, Y., Wang, H.: Stability and selective harvesting of a phytoplankton–zooplankton system. J. Appl. Math. 2014, 684790 (2014) Wang, Y., Wang, H.: Stability and selective harvesting of a phytoplankton–zooplankton system. J. Appl. Math. 2014, 684790 (2014)
47.
Zurück zum Zitat Wiles, P., van Duren, L., Ḧase, C., Larsen, J., Simpson, J.: Stratification and mixingin the Limfjorden in relation to mussel culture. J. Marine. Syst. 60(1–2), 129–143 (2006)CrossRef Wiles, P., van Duren, L., Ḧase, C., Larsen, J., Simpson, J.: Stratification and mixingin the Limfjorden in relation to mussel culture. J. Marine. Syst. 60(1–2), 129–143 (2006)CrossRef
48.
Zurück zum Zitat Yang, Q., Huo, H.: Dynamics of an edge-based seir model for sexually transmitted diseases. Math. Biosci. Eng. 17(3), 669–699 (2020)MathSciNetCrossRef Yang, Q., Huo, H.: Dynamics of an edge-based seir model for sexually transmitted diseases. Math. Biosci. Eng. 17(3), 669–699 (2020)MathSciNetCrossRef
49.
Zurück zum Zitat Yu, X., Yuan, S., Zhang, T.: Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling. Nonlinear Anal. Hybrid Syst. 34, 209–225 (2019)MathSciNetMATHCrossRef Yu, X., Yuan, S., Zhang, T.: Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling. Nonlinear Anal. Hybrid Syst. 34, 209–225 (2019)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Zhang, X., Chang, S., Huo, H.: Dynamic behavior of a stochastic SIR epidemic model with vertical ransmission. E. J. Diff. Equ. 2019(125), 1–20 (2019) Zhang, X., Chang, S., Huo, H.: Dynamic behavior of a stochastic SIR epidemic model with vertical ransmission. E. J. Diff. Equ. 2019(125), 1–20 (2019)
53.
Zurück zum Zitat Zhang, X., Zhao, H.: Bifurcation and optimal harvesting of a diffusive predator–prey system with delays and interval biological parameters. J. Theor. Biol. 363, 390–403 (2014)MathSciNetMATHCrossRef Zhang, X., Zhao, H.: Bifurcation and optimal harvesting of a diffusive predator–prey system with delays and interval biological parameters. J. Theor. Biol. 363, 390–403 (2014)MathSciNetMATHCrossRef
Metadaten
Titel
Dynamical analysis of a fuzzy phytoplankton–zooplankton model with refuge, fishery protection and harvesting
verfasst von
Xin-You Meng
Yu-Qian Wu
Publikationsdatum
04.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2020
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01321-y

Weitere Artikel der Ausgabe 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Zur Ausgabe