Skip to main content
Erschienen in: International Journal of Social Robotics 4/2020

24.05.2019 | S.I.: The Mutual Shaping of Human-Robot Interaction

Adaptive Side-by-Side Social Robot Navigation to Approach and Interact with People

verfasst von: Ely Repiso, Anaís Garrell, Alberto Sanfeliu

Erschienen in: International Journal of Social Robotics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new framework for how autonomous social robots approach and accompany people in urban environments. The method discussed allows the robot to accompany a person and approach to other one, by adapting its own navigation in anticipation of future interactions with other people or contact with static obstacles. The contributions of the paper are manifold: firstly, we extended the Social Force model and the Anticipative Kinodynamic Planner (Ferrer and Sanfeliu, in: IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2014) to the case of an adaptive side-by-side navigation; secondly, we enhance side-by-side navigation with an approaching task and a final positioning that allows the robot to interact with both people; and finally, we use findings from experiments of real-life observations of people walking in pairs to define the parameters of the human–robot interaction in our case of adaptive side-by-side. The method was validated by a large set of simulations; we also conducted real-life experiments with our robot, Tibi, to validate the framework described for the interaction process. In addition, we carried out various surveys and user studies to indicate the social acceptability of the robots performance of the accompanying, approaching and positioning tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ferrer G, Sanfeliu A (2014) Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1730–1735 Ferrer G, Sanfeliu A (2014) Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1730–1735
2.
Zurück zum Zitat Leite I, Martinho C, Paiva A (2013) Social robots for long-term interaction: a survey. Int J Soc Robot 5(2):291–308 Leite I, Martinho C, Paiva A (2013) Social robots for long-term interaction: a survey. Int J Soc Robot 5(2):291–308
3.
Zurück zum Zitat Bauer A, Wollherr D, Buss M (2008) Human–robot collaboration: a survey. Int J Humanoid Robot 5(01):47–66CrossRef Bauer A, Wollherr D, Buss M (2008) Human–robot collaboration: a survey. Int J Humanoid Robot 5(01):47–66CrossRef
4.
Zurück zum Zitat Goodrich MA, Schultz AC (2007) Human–robot interaction: a survey. Found Trends Hum Comput Interact 1(3):203–275CrossRef Goodrich MA, Schultz AC (2007) Human–robot interaction: a survey. Found Trends Hum Comput Interact 1(3):203–275CrossRef
5.
Zurück zum Zitat Kanda T, Shiomi M, Miyashita Z, Ishiguro H, Hagita N (2009) An affective guide robot in a shopping mall. In: Proceedings of the 4th ACM/IEEE international conference on human robot interaction, pp 173–180 Kanda T, Shiomi M, Miyashita Z, Ishiguro H, Hagita N (2009) An affective guide robot in a shopping mall. In: Proceedings of the 4th ACM/IEEE international conference on human robot interaction, pp 173–180
6.
Zurück zum Zitat Gross H-M, Boehme H, Schroeter C, Müller S, König A, Einhorn E, Martin C, Merten M, Bley A (2009) Toomas: interactive shopping guide robots in everyday use-final implementation and experiences from long-term field trials. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2005–2012 Gross H-M, Boehme H, Schroeter C, Müller S, König A, Einhorn E, Martin C, Merten M, Bley A (2009) Toomas: interactive shopping guide robots in everyday use-final implementation and experiences from long-term field trials. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2005–2012
7.
Zurück zum Zitat Garrell A, Sanfeliu A (2012) Cooperative social robots to accompany groups of people. Int J Robot Res 31(13):1675–1701CrossRef Garrell A, Sanfeliu A (2012) Cooperative social robots to accompany groups of people. Int J Robot Res 31(13):1675–1701CrossRef
8.
Zurück zum Zitat Kuderer M, Burgard W (2014) An approach to socially compliant leader following for mobile robots. In: International conference on social robotics. Springer, pp 239–248 Kuderer M, Burgard W (2014) An approach to socially compliant leader following for mobile robots. In: International conference on social robotics. Springer, pp 239–248
10.
Zurück zum Zitat The VN, Jayawardena C (2016) A decision making model for optimizing social relationship for side-by-side robotic wheelchairs in active mode. In: 6th IEEE international conference on biomedical robotics and biomechatronics, pp 735–740 The VN, Jayawardena C (2016) A decision making model for optimizing social relationship for side-by-side robotic wheelchairs in active mode. In: 6th IEEE international conference on biomedical robotics and biomechatronics, pp 735–740
11.
Zurück zum Zitat Rodić A, Vujović M, Stevanović I, Jovanović M (2016) Development of human-centered social robot with embedded personality for elderly care. In: New trends in medical and service robots. Springer, Cham, pp 233–247 Rodić A, Vujović M, Stevanović I, Jovanović M (2016) Development of human-centered social robot with embedded personality for elderly care. In: New trends in medical and service robots. Springer, Cham, pp 233–247
12.
Zurück zum Zitat Morales Y, Kanda T, Hagita N (2014) Walking together: side by side walking model for an interacting robot. J Hum Robot Interact 3(2):51–73CrossRef Morales Y, Kanda T, Hagita N (2014) Walking together: side by side walking model for an interacting robot. J Hum Robot Interact 3(2):51–73CrossRef
13.
Zurück zum Zitat Carton D, Turnwald A, Wollherr D, Buss M (2013) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. In: Experimental robotics. Springer, Heidelberg, pp 199–214 Carton D, Turnwald A, Wollherr D, Buss M (2013) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. In: Experimental robotics. Springer, Heidelberg, pp 199–214
14.
Zurück zum Zitat Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans?-strategies for social robots to initiate interaction. In: IEEE international conference on human–robot interaction, pp 109–116 Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans?-strategies for social robots to initiate interaction. In: IEEE international conference on human–robot interaction, pp 109–116
15.
Zurück zum Zitat Zanlungo F, Ikeda T, Kanda T (2014) Potential for the dynamics of pedestrians in a socially interacting group. Phys Rev E 89(1):012811CrossRef Zanlungo F, Ikeda T, Kanda T (2014) Potential for the dynamics of pedestrians in a socially interacting group. Phys Rev E 89(1):012811CrossRef
16.
Zurück zum Zitat Ikeda T, Chigodo Y, Rea D, Zanlungo F, Shiomi M, Kanda T (2012) Modeling and prediction of pedestrian behavior based on the sub-goal concept. In: Robotics: science and systems Ikeda T, Chigodo Y, Rea D, Zanlungo F, Shiomi M, Kanda T (2012) Modeling and prediction of pedestrian behavior based on the sub-goal concept. In: Robotics: science and systems
17.
Zurück zum Zitat Chen Y, Wu F, Shuai W, Wang N, Chen R, Chen X (2015) Kejia robot—an attractive shopping mall guider. In: International conference on social robotics. Springer, pp 145–154 Chen Y, Wu F, Shuai W, Wang N, Chen R, Chen X (2015) Kejia robot—an attractive shopping mall guider. In: International conference on social robotics. Springer, pp 145–154
18.
Zurück zum Zitat Pang WC, Seet G, Yao X (2013) A multimodal person-following system for telepresence applications. In: Proceedings of the 19th ACM symposium on virtual reality software and technology. ACM, pp 157–164 Pang WC, Seet G, Yao X (2013) A multimodal person-following system for telepresence applications. In: Proceedings of the 19th ACM symposium on virtual reality software and technology. ACM, pp 157–164
19.
Zurück zum Zitat Gross H-M, Schroeter C, Mueller S, Volkhardt M, Einhorn E, Bley A, Martin C, Langner T, Merten M (2011) Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2430–2437 Gross H-M, Schroeter C, Mueller S, Volkhardt M, Einhorn E, Bley A, Martin C, Langner T, Merten M (2011) Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2430–2437
20.
Zurück zum Zitat Prassler E, Bank D, Kluge B (2001) Motion coordination between a human and a robotic wheelchair. In: Proceedings of 10th IEEE international workshop on robot and human interactive communication, pp 412–417 Prassler E, Bank D, Kluge B (2001) Motion coordination between a human and a robotic wheelchair. In: Proceedings of 10th IEEE international workshop on robot and human interactive communication, pp 412–417
21.
Zurück zum Zitat Kobayashi Y, Kinpara Y, Shibusawa T, Kuno Y (2009) Robotic wheelchair based on observations of people using integrated sensors. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2013–2018 Kobayashi Y, Kinpara Y, Shibusawa T, Kuno Y (2009) Robotic wheelchair based on observations of people using integrated sensors. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2013–2018
22.
Zurück zum Zitat Suzuki R, Yamada T, Arai M, Sato Y, Kobayashi Y, Kuno Y (2014) Multiple robotic wheelchair system considering group communication. In: International symposium on visual computing. Springer, pp 805–814 Suzuki R, Yamada T, Arai M, Sato Y, Kobayashi Y, Kuno Y (2014) Multiple robotic wheelchair system considering group communication. In: International symposium on visual computing. Springer, pp 805–814
23.
Zurück zum Zitat Narayanan VK, Spalanzani A, Pasteau F, Babel M (2015) On equitably approaching and joining a group of interacting humans. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4071–4077 Narayanan VK, Spalanzani A, Pasteau F, Babel M (2015) On equitably approaching and joining a group of interacting humans. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4071–4077
24.
Zurück zum Zitat Kato Y, Kanda T, Ishiguro H (2015) May i help you? Design of human-like polite approaching behavior. In: Proceedings of the tenth annual ACM/IEEE international conference on human–robot interaction. ACM, pp 35–42 Kato Y, Kanda T, Ishiguro H (2015) May i help you? Design of human-like polite approaching behavior. In: Proceedings of the tenth annual ACM/IEEE international conference on human–robot interaction. ACM, pp 35–42
25.
Zurück zum Zitat Charalampous K, Kostavelis I, Gasteratos A (2017) Recent trends in social aware robot navigation: a survey. Robot Auton Syst 93(2017):85–104CrossRef Charalampous K, Kostavelis I, Gasteratos A (2017) Recent trends in social aware robot navigation: a survey. Robot Auton Syst 93(2017):85–104CrossRef
26.
Zurück zum Zitat Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Auton Syst 61(12):1726–1743CrossRef Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Auton Syst 61(12):1726–1743CrossRef
27.
Zurück zum Zitat Owen E, Montano L (2005) Motion planning in dynamic environments using the velocity space. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 2833–2838 Owen E, Montano L (2005) Motion planning in dynamic environments using the velocity space. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 2833–2838
28.
Zurück zum Zitat Foka AF, Trahanias PE (2010) Probabilistic autonomous robot navigation in dynamic environments with human motion prediction. Int J Soc Robot 2(1):79–94CrossRef Foka AF, Trahanias PE (2010) Probabilistic autonomous robot navigation in dynamic environments with human motion prediction. Int J Soc Robot 2(1):79–94CrossRef
29.
Zurück zum Zitat Henry P, Vollmer C, Ferris B, Fox D (2010) Learning to navigate through crowded environments. In: International conference on robotics and automation, pp 981–986 Henry P, Vollmer C, Ferris B, Fox D (2010) Learning to navigate through crowded environments. In: International conference on robotics and automation, pp 981–986
30.
Zurück zum Zitat Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356CrossRef Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356CrossRef
31.
Zurück zum Zitat Kuderer M, Kretzschmar H, Sprunk C, Burgard W (2012) Feature-based prediction of trajectories for socially compliant navigation. In: Robotics: science and systems Kuderer M, Kretzschmar H, Sprunk C, Burgard W (2012) Feature-based prediction of trajectories for socially compliant navigation. In: Robotics: science and systems
32.
Zurück zum Zitat Luber M, Spinello L, Silva J, Arras KO (2012) Socially-aware robot navigation: a learning approach. In: IEEE/RSJ international conference on Intelligent robots and systems, pp 902–907 Luber M, Spinello L, Silva J, Arras KO (2012) Socially-aware robot navigation: a learning approach. In: IEEE/RSJ international conference on Intelligent robots and systems, pp 902–907
33.
Zurück zum Zitat Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883CrossRef Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883CrossRef
34.
Zurück zum Zitat Ohya A (2002) Human robot interaction in mobile robot applications. In: Proceedings. 11th IEEE international workshop on robot and human interactive communication, pp 5–10 Ohya A (2002) Human robot interaction in mobile robot applications. In: Proceedings. 11th IEEE international workshop on robot and human interactive communication, pp 5–10
35.
Zurück zum Zitat Hu J-S, Wang J-J, Ho DM (2014) Design of sensing system and anticipative behavior for human following of mobile robots. IEEE Trans Ind Electron 61(4):1916–1927CrossRef Hu J-S, Wang J-J, Ho DM (2014) Design of sensing system and anticipative behavior for human following of mobile robots. IEEE Trans Ind Electron 61(4):1916–1927CrossRef
36.
Zurück zum Zitat Nakazawa K, Takahashi K, Kaneko M (2015) Movement control of accompanying robot based on artificial potential field adapted to dynamic environments. Electr Eng Jpn 192(1):25–35CrossRef Nakazawa K, Takahashi K, Kaneko M (2015) Movement control of accompanying robot based on artificial potential field adapted to dynamic environments. Electr Eng Jpn 192(1):25–35CrossRef
37.
Zurück zum Zitat Morales Saiki LY, Satake S, Huq R, Glas D, Kanda T, Hagita N (2012) How do people walk side-by-side? Using a computational model of human behavior for a social robot. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction. ACM, pp 301–308 Morales Saiki LY, Satake S, Huq R, Glas D, Kanda T, Hagita N (2012) How do people walk side-by-side? Using a computational model of human behavior for a social robot. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction. ACM, pp 301–308
38.
Zurück zum Zitat Murakami R, Morales Saiki LY, Satake S, Kanda T, Ishiguro H (2014) Destination unknown: walking side-by-side without knowing the goal. In: Proceedings of the ACM/IEEE international conference on human–robot interaction. ACM, pp 471–478 Murakami R, Morales Saiki LY, Satake S, Kanda T, Ishiguro H (2014) Destination unknown: walking side-by-side without knowing the goal. In: Proceedings of the ACM/IEEE international conference on human–robot interaction. ACM, pp 471–478
39.
Zurück zum Zitat Karunarathne D, Morales Y, Kanda T, Ishiguro H (2018) Model of side-by-side walking without the robot knowing the goal. Int J Soc Robot 10(4):401–420CrossRef Karunarathne D, Morales Y, Kanda T, Ishiguro H (2018) Model of side-by-side walking without the robot knowing the goal. Int J Soc Robot 10(4):401–420CrossRef
40.
Zurück zum Zitat Kuderer M, Kretzschmar H, Burgard W (2013) Teaching mobile robots to cooperatively navigate in populated environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3138–3143 Kuderer M, Kretzschmar H, Burgard W (2013) Teaching mobile robots to cooperatively navigate in populated environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3138–3143
41.
Zurück zum Zitat Hall ET (1910) The hidden dimension, vol 609. Garden City, Doubleday. Anchor Books, New York, p 71 Hall ET (1910) The hidden dimension, vol 609. Garden City, Doubleday. Anchor Books, New York, p 71
42.
Zurück zum Zitat Walters ML, Dautenhahn K, Te Boekhorst R, Koay KL, Kaouri C, Woods S, Nehaniv C, Lee D, Werry I (2005) The influence of subjects’ personality traits on personal spatial zones in a human–robot interaction experiment. In: IEEE international workshop on robot and human interactive communication, pp 347–352 Walters ML, Dautenhahn K, Te Boekhorst R, Koay KL, Kaouri C, Woods S, Nehaniv C, Lee D, Werry I (2005) The influence of subjects’ personality traits on personal spatial zones in a human–robot interaction experiment. In: IEEE international workshop on robot and human interactive communication, pp 347–352
43.
Zurück zum Zitat Syrdal DS, Koay KL, Walters ML, Dautenhahn K (2007) A personalized robot companion? The role of individual differences on spatial preferences in hri scenarios. In: The 16th IEEE international symposium on robot and human interactive communication, pp 1143–1148 Syrdal DS, Koay KL, Walters ML, Dautenhahn K (2007) A personalized robot companion? The role of individual differences on spatial preferences in hri scenarios. In: The 16th IEEE international symposium on robot and human interactive communication, pp 1143–1148
44.
Zurück zum Zitat Woods S, Walters M, Koay KL, Dautenhahn K (2006) Comparing human robot interaction scenarios using live and video based methods: towards a novel methodological approach. In: 9th IEEE international workshop on advanced motion control, pp 750–755 Woods S, Walters M, Koay KL, Dautenhahn K (2006) Comparing human robot interaction scenarios using live and video based methods: towards a novel methodological approach. In: 9th IEEE international workshop on advanced motion control, pp 750–755
45.
Zurück zum Zitat Belkhouche F, Belkhouche B, Rastgoufard P (2006) Line of sight robot navigation toward a moving goal. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(2):255–267CrossRef Belkhouche F, Belkhouche B, Rastgoufard P (2006) Line of sight robot navigation toward a moving goal. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36(2):255–267CrossRef
46.
Zurück zum Zitat Freda L, Oriolo G (2007) Vision-based interception of a moving target with a nonholonomic mobile robot. Robot Auton Syst 55(6):419–432CrossRef Freda L, Oriolo G (2007) Vision-based interception of a moving target with a nonholonomic mobile robot. Robot Auton Syst 55(6):419–432CrossRef
47.
Zurück zum Zitat Manchester IR, Low E-M, Savkin AV (2008) Interception of a moving object with a specified approach angle by a wheeled robot: theory and experiment. In: 47th IEEE conference on decision and control, pp 490–495 Manchester IR, Low E-M, Savkin AV (2008) Interception of a moving object with a specified approach angle by a wheeled robot: theory and experiment. In: 47th IEEE conference on decision and control, pp 490–495
48.
Zurück zum Zitat Fajen BR, Warren WH (2007) Behavioral dynamics of intercepting a moving target. Exp Brain Res 180(2):303–319CrossRef Fajen BR, Warren WH (2007) Behavioral dynamics of intercepting a moving target. Exp Brain Res 180(2):303–319CrossRef
49.
Zurück zum Zitat Avrunin E, Simmons R (2013) Using human approach paths to improve social navigation. In: 8th ACM/IEEE international conference on human–robot interaction, pp 73–74 Avrunin E, Simmons R (2013) Using human approach paths to improve social navigation. In: 8th ACM/IEEE international conference on human–robot interaction, pp 73–74
50.
Zurück zum Zitat Garrell A, Villamizar M, Moreno-Noguer F, Sanfeliu A (2017) Teaching robots proactive behavior using human assistance. Int J Soc Robot 2(9):231–249CrossRef Garrell A, Villamizar M, Moreno-Noguer F, Sanfeliu A (2017) Teaching robots proactive behavior using human assistance. Int J Soc Robot 2(9):231–249CrossRef
51.
Zurück zum Zitat Carton D, Olszowy W, Wollherr D, Buss M (2017) Socio-contextual constraints for human approach with a mobile robot. Int J Soc Robot 9(2):309–327CrossRef Carton D, Olszowy W, Wollherr D, Buss M (2017) Socio-contextual constraints for human approach with a mobile robot. Int J Soc Robot 9(2):309–327CrossRef
52.
Zurück zum Zitat Ferrer G, Sanfeliu A (2014) Bayesian human motion intentionality prediction in urban environments. Pattern Recognit Lett 44:134–140CrossRef Ferrer G, Sanfeliu A (2014) Bayesian human motion intentionality prediction in urban environments. Pattern Recognit Lett 44:134–140CrossRef
53.
Zurück zum Zitat Ferrer G, Garrell A, Herrero F, Sanfeliu A (2016) Robot social-aware navigation framework to accompany people walking side-by-side. Auton Robots 41(4):775–793CrossRef Ferrer G, Garrell A, Herrero F, Sanfeliu A (2016) Robot social-aware navigation framework to accompany people walking side-by-side. Auton Robots 41(4):775–793CrossRef
54.
Zurück zum Zitat Ferrer G, Sanfeliu A (2015) Multi-objective cost-to-go functions on robot navigation in dynamic environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3824–3829 Ferrer G, Sanfeliu A (2015) Multi-objective cost-to-go functions on robot navigation in dynamic environments. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3824–3829
55.
Zurück zum Zitat Repiso E, Ferrer G, Sanfeliu A (2017) On-line adaptive side-by-side human robot companion in dynamic urban environments. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3824–3829 Repiso E, Ferrer G, Sanfeliu A (2017) On-line adaptive side-by-side human robot companion in dynamic urban environments. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3824–3829
56.
Zurück zum Zitat Katagami D, Yamada S (2003) Active teaching for an interactive learning robot. In: Proceedings on the 12th robot and human interactive communication, pp 181–186 Katagami D, Yamada S (2003) Active teaching for an interactive learning robot. In: Proceedings on the 12th robot and human interactive communication, pp 181–186
57.
Zurück zum Zitat Repiso E, Garrell A, Sanfeliu A (2018) Robot approaching and engaging people in a human-robot companion framework. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 8200–8205 Repiso E, Garrell A, Sanfeliu A (2018) Robot approaching and engaging people in a human-robot companion framework. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 8200–8205
58.
Zurück zum Zitat Narayanan VK, Spalanzani A, Luo RC, Babel M (2016) Analysis of an adaptive strategy for equitably approaching and joining human interactions. In: 25th IEEE international symposium on robot and human interactive communication, pp 341–346 Narayanan VK, Spalanzani A, Luo RC, Babel M (2016) Analysis of an adaptive strategy for equitably approaching and joining human interactions. In: 25th IEEE international symposium on robot and human interactive communication, pp 341–346
59.
Zurück zum Zitat Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRef Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRef
60.
Zurück zum Zitat Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. Europhys Lett (EPL) 93(6):68005CrossRef Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. Europhys Lett (EPL) 93(6):68005CrossRef
61.
Zurück zum Zitat Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99CrossRef Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99CrossRef
62.
Zurück zum Zitat Stubbs K, Hinds PJ, Wettergreen D (2007) Autonomy and common ground in human–robot interaction: a field study. IEEE Intell Syst 22(2):42–50CrossRef Stubbs K, Hinds PJ, Wettergreen D (2007) Autonomy and common ground in human–robot interaction: a field study. IEEE Intell Syst 22(2):42–50CrossRef
63.
Zurück zum Zitat Trulls E, Corominas Murtra A, Pérez-Ibarz J, Ferrer G, Vasquez D, Mirats-Tur JM, Sanfeliu A (2011) Autonomous navigation for mobile service robots in urban pedestrian environments. J Field Robot 28(3):329–354CrossRef Trulls E, Corominas Murtra A, Pérez-Ibarz J, Ferrer G, Vasquez D, Mirats-Tur JM, Sanfeliu A (2011) Autonomous navigation for mobile service robots in urban pedestrian environments. J Field Robot 28(3):329–354CrossRef
64.
Zurück zum Zitat Vaquero V, Repiso E, Sanfeliu A (2019) Robust and real-time detection and tracking of moving objects with minimum 2D LIDAR information to advance autonomous cargo handling in ports. Sensors 19(1):107CrossRef Vaquero V, Repiso E, Sanfeliu A (2019) Robust and real-time detection and tracking of moving objects with minimum 2D LIDAR information to advance autonomous cargo handling in ports. Sensors 19(1):107CrossRef
Metadaten
Titel
Adaptive Side-by-Side Social Robot Navigation to Approach and Interact with People
verfasst von
Ely Repiso
Anaís Garrell
Alberto Sanfeliu
Publikationsdatum
24.05.2019
Verlag
Springer Netherlands
Erschienen in
International Journal of Social Robotics / Ausgabe 4/2020
Print ISSN: 1875-4791
Elektronische ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-019-00559-2

Weitere Artikel der Ausgabe 4/2020

International Journal of Social Robotics 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.