Skip to main content
Erschienen in: Cognitive Computation 2/2018

04.08.2017

Incremental Adaptive Learning Vector Quantization for Character Recognition with Continuous Style Adaptation

verfasst von: Yuan-Yuan Shen, Cheng-Lin Liu

Erschienen in: Cognitive Computation | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Incremental learning enables continuous model adaptation based on a constantly arriving data stream. It is a way relevant to human cognitive system, which learns to predict objects in a changing world. Incremental learning for character recognition is a typical scenario that characters appear sequentially and the font/writing style changes irregularly. In the paper, we investigate how to classify characters incrementally (i.e., input patterns appear once at a time). A reasonable assumption is that adjacent characters from the same font or the same writer share the same style in a short period while style variation occurs in characters printed by different fonts or written by different persons during a long period. The challenging issue here is how to take advantage of the local style consistency and adapt to the continuous style variation as well incrementally. For this purpose, we propose a continuous incremental adaptive learning vector quantization (CIALVQ) method, which incrementally learns a self-adaptive style transfer matrix for mapping input patterns from style-conscious space onto style-free space. After style transformation, this problem is casted into a common character recognition task and an incremental learning vector quantization (ILVQ) classifier is used. In this framework, we consider two learning modes: supervised incremental learning and active incremental learning. In the latter mode, samples receiving low confidence from the classifier are requested class labels. We evaluated the classification performance of CIALVQ in two scenarios, interleaved test-then-train and style-specific classification on NIST hand-printed data sets. The results show that local style consistency improves the accuracies of both two test scenarios, and for both supervised and active incremental learning modes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bransford JD, Brown AL, Cocking RR. How people learn: brain, mind, experience, and school. National Academy Press. 2000. Bransford JD, Brown AL, Cocking RR. How people learn: brain, mind, experience, and school. National Academy Press. 2000.
2.
Zurück zum Zitat Gros C. Cognitive computation with autonomously active neural networks: an emerging field[J]. Cogn Comput. 2009;1(1):77–90.CrossRef Gros C. Cognitive computation with autonomously active neural networks: an emerging field[J]. Cogn Comput. 2009;1(1):77–90.CrossRef
3.
Zurück zum Zitat Gong C, Tao D, Liu W, Liu L, Yang J. Label propagation via teaching-to-learn and learning-to-teach[J]. IEEE Trans Neural Netw Learn Syst. 2017;28(6):1452–65.CrossRefPubMed Gong C, Tao D, Liu W, Liu L, Yang J. Label propagation via teaching-to-learn and learning-to-teach[J]. IEEE Trans Neural Netw Learn Syst. 2017;28(6):1452–65.CrossRefPubMed
4.
Zurück zum Zitat Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang J. Multi-modal curriculum learning for semi-supervised image classification[J]. IEEE Trans Image Process. 2016;25(7):3249–60.CrossRefPubMed Gong C, Tao D, Maybank SJ, Liu W, Kang G, Yang J. Multi-modal curriculum learning for semi-supervised image classification[J]. IEEE Trans Image Process. 2016;25(7):3249–60.CrossRefPubMed
5.
Zurück zum Zitat Gong C, Tao D, Yang J, Liu W. Teaching-to-learn and learning-to-teach for multi-label propagation[C]. AAAI. 2016. p. 1610–16. Gong C, Tao D, Yang J, Liu W. Teaching-to-learn and learning-to-teach for multi-label propagation[C]. AAAI. 2016. p. 1610–16.
6.
Zurück zum Zitat Gong C. Exploring commonality and individuality for multi-modal curriculum learning[C]. AAAI. 2017. p. 1926–33. Gong C. Exploring commonality and individuality for multi-modal curriculum learning[C]. AAAI. 2017. p. 1926–33.
7.
Zurück zum Zitat Syed N, Liu H, Sung K. Incremental learning with support vector machines[C]. In: International joint conference on artificial intelligence. Sweden: Morgan Kaufmann Publishers. 1999. p. 352–6. Syed N, Liu H, Sung K. Incremental learning with support vector machines[C]. In: International joint conference on artificial intelligence. Sweden: Morgan Kaufmann Publishers. 1999. p. 352–6.
8.
Zurück zum Zitat Hoi SCH, Wang J, Zhao P. Libol: A library for online learning algorithms[J]. J Mach Learn Res. 2014; 15(1):495–9. Hoi SCH, Wang J, Zhao P. Libol: A library for online learning algorithms[J]. J Mach Learn Res. 2014; 15(1):495–9.
9.
Zurück zum Zitat Ding S, Zhang J, Jia H, et al. An adaptive density data stream clustering algorithm[J]. Cogn Comput. 2016;8(1):30–38.CrossRef Ding S, Zhang J, Jia H, et al. An adaptive density data stream clustering algorithm[J]. Cogn Comput. 2016;8(1):30–38.CrossRef
10.
Zurück zum Zitat Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems[J]. Cogn Comput. 2016;8(5):924–34.CrossRef Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems[J]. Cogn Comput. 2016;8(5):924–34.CrossRef
11.
Zurück zum Zitat Trier Ø D, Jain AK, Taxt T. Feature extraction methods for character recognition-a survey[J]. Pattern Recogn. 1996;29(4):641–62.CrossRef Trier Ø D, Jain AK, Taxt T. Feature extraction methods for character recognition-a survey[J]. Pattern Recogn. 1996;29(4):641–62.CrossRef
12.
Zurück zum Zitat Sarkar P, Nagy G. Style consistent classification of isogenous patterns[J]. IEEE Trans Pattern Anal Mach Intell. 2005;27(1):88–98.CrossRefPubMed Sarkar P, Nagy G. Style consistent classification of isogenous patterns[J]. IEEE Trans Pattern Anal Mach Intell. 2005;27(1):88–98.CrossRefPubMed
13.
Zurück zum Zitat Abraham WC, Robins A. Memory retention the synaptic stability versus plasticity dilemma. Trends Neurosci. 2005;28(2):73–8.CrossRefPubMed Abraham WC, Robins A. Memory retention the synaptic stability versus plasticity dilemma. Trends Neurosci. 2005;28(2):73–8.CrossRefPubMed
14.
Zurück zum Zitat Zhang XY, Liu CL. Writer adaptation with style transfer mapping[J]. IEEE Trans Pattern Anal Mach Intell. 2013;35(7):1773–87.CrossRefPubMed Zhang XY, Liu CL. Writer adaptation with style transfer mapping[J]. IEEE Trans Pattern Anal Mach Intell. 2013;35(7):1773–87.CrossRefPubMed
15.
Zurück zum Zitat Kohonen T. Improved versions of learning vector quantization[C]. In: International joint conference on neural networks. 1990. p. 545–550. Kohonen T. Improved versions of learning vector quantization[C]. In: International joint conference on neural networks. 1990. p. 545–550.
16.
Zurück zum Zitat Kohonen T. The self-organizing map[J]. Proc IEEE. 1990;78(9):1464–80.CrossRef Kohonen T. The self-organizing map[J]. Proc IEEE. 1990;78(9):1464–80.CrossRef
17.
Zurück zum Zitat Jin XB, Liu CL, Hou X. Regularized margin-based conditional log-likelihood loss for prototype learning[J]. Pattern Recogn. 2010;43(7):2428–38.CrossRef Jin XB, Liu CL, Hou X. Regularized margin-based conditional log-likelihood loss for prototype learning[J]. Pattern Recogn. 2010;43(7):2428–38.CrossRef
18.
Zurück zum Zitat Shen YY, Liu CL. Incremental learning vector quantization for character recognition with local style consistency[C]. In: Proceeding of the 8th international conference in brain inspired cognitive systems. 2016. p. 228–39. Shen YY, Liu CL. Incremental learning vector quantization for character recognition with local style consistency[C]. In: Proceeding of the 8th international conference in brain inspired cognitive systems. 2016. p. 228–39.
19.
Zurück zum Zitat Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.CrossRefPubMed Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.CrossRefPubMed
20.
Zurück zum Zitat Oza NC. Online bagging and boosting[C]. IEEE International Conference on Systems, Man and Cybernetics:2340–45. 2005. Oza NC. Online bagging and boosting[C]. IEEE International Conference on Systems, Man and Cybernetics:2340–45. 2005.
21.
Zurück zum Zitat Liu X, Yu T. Gradient feature selection for online boosting[C]. ICCV. 2007. p. 18. Liu X, Yu T. Gradient feature selection for online boosting[C]. ICCV. 2007. p. 18.
22.
Zurück zum Zitat Saffari A, Leistner C, Santner J, et al. On-line random forests[C] In: Computer vision workshops (ICCV Workshops). 2009. p. 1393–400. Saffari A, Leistner C, Santner J, et al. On-line random forests[C] In: Computer vision workshops (ICCV Workshops). 2009. p. 1393–400.
23.
Zurück zum Zitat Kirstein S, Wersing H, Körner E. A biologically motivated visual memory architecture for online learning of objects[J]. Neural Netw. 2008;21(1):65–77.CrossRefPubMed Kirstein S, Wersing H, Körner E. A biologically motivated visual memory architecture for online learning of objects[J]. Neural Netw. 2008;21(1):65–77.CrossRefPubMed
24.
Zurück zum Zitat Xu Y, Shen F, Zhao J. An incremental learning vector quantization algorithm for pattern classification[J]. Neural Comput Appl. 2012;21(6):1205–15.CrossRef Xu Y, Shen F, Zhao J. An incremental learning vector quantization algorithm for pattern classification[J]. Neural Comput Appl. 2012;21(6):1205–15.CrossRef
25.
Zurück zum Zitat Cesa-Bianchi N, Conconi A, Gentile C. A second-order perceptron algorithm[J]. SIAM J Comput. 2005; 34(3):640–68.CrossRef Cesa-Bianchi N, Conconi A, Gentile C. A second-order perceptron algorithm[J]. SIAM J Comput. 2005; 34(3):640–68.CrossRef
26.
Zurück zum Zitat Crammer K, Dredze M, Kulesza A. Multi-class confidence weighted algorithms[C]. In: Proceedings of the conference on empirical methods in natural language processing. 2009. p. 496–504. Crammer K, Dredze M, Kulesza A. Multi-class confidence weighted algorithms[C]. In: Proceedings of the conference on empirical methods in natural language processing. 2009. p. 496–504.
27.
Zurück zum Zitat Ushiku Y, Hidaka M, Harada T. Three guidelines of online learning for large-scale visual recognition[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 3574–81. Ushiku Y, Hidaka M, Harada T. Three guidelines of online learning for large-scale visual recognition[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 3574–81.
28.
Zurück zum Zitat Gama J, žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on concept drift adaptation[J]. ACM Comput Surv 2014;46(4). Gama J, žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on concept drift adaptation[J]. ACM Comput Surv 2014;46(4).
29.
Zurück zum Zitat Veeramachaneni S, Nagy G. Adaptive classifiers for multisource OCR[J]. Int J Doc Anal Recogn. 2003;6(3): 154–66.CrossRef Veeramachaneni S, Nagy G. Adaptive classifiers for multisource OCR[J]. Int J Doc Anal Recogn. 2003;6(3): 154–66.CrossRef
30.
Zurück zum Zitat Veeramachaneni S, Nagy G. Style context with second-order statistics[J]. IEEE Trans Pattern Anal Mach Intell. 2005;27(1):14– 22.CrossRefPubMed Veeramachaneni S, Nagy G. Style context with second-order statistics[J]. IEEE Trans Pattern Anal Mach Intell. 2005;27(1):14– 22.CrossRefPubMed
31.
Zurück zum Zitat Huang Z, Ding K, Jin L, et al. Writer adaptive online handwriting recognition using incremental linear discriminant analysis[C]. In: IEEE Proceedings of the conference on document analysis and recognition. 2009. p. 91–5. Huang Z, Ding K, Jin L, et al. Writer adaptive online handwriting recognition using incremental linear discriminant analysis[C]. In: IEEE Proceedings of the conference on document analysis and recognition. 2009. p. 91–5.
32.
Zurück zum Zitat Ding K, Jin L. Incremental MQDF learning for writer adaptive handwriting recognition[C]. In: Proceedings of the conference on frontiers in handwriting recognition (ICFHR). 2010. p. 559– 64. Ding K, Jin L. Incremental MQDF learning for writer adaptive handwriting recognition[C]. In: Proceedings of the conference on frontiers in handwriting recognition (ICFHR). 2010. p. 559– 64.
33.
Zurück zum Zitat Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
34.
Zurück zum Zitat Schleif FM, Hammer B, Villmann T. Margin-based active learning for LVQ networks[J]. Neurocomputing. 2007;70(7):1215–24.CrossRef Schleif FM, Hammer B, Villmann T. Margin-based active learning for LVQ networks[J]. Neurocomputing. 2007;70(7):1215–24.CrossRef
35.
Zurück zum Zitat Grother PJ. Handprinted forms and character database, NIST special database 19. Technical Report and CDROM. 1995. Grother PJ. Handprinted forms and character database, NIST special database 19. Technical Report and CDROM. 1995.
36.
Zurück zum Zitat Liu CL, Sako H, Fujisawa H. Performance evaluation of pattern classifiers for handwritten character recognition[J]. Int J Doc Anal Recogn. 2002;4(3):191–204.CrossRef Liu CL, Sako H, Fujisawa H. Performance evaluation of pattern classifiers for handwritten character recognition[J]. Int J Doc Anal Recogn. 2002;4(3):191–204.CrossRef
37.
Zurück zum Zitat Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res. 2011;12:2121–59. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res. 2011;12:2121–59.
Metadaten
Titel
Incremental Adaptive Learning Vector Quantization for Character Recognition with Continuous Style Adaptation
verfasst von
Yuan-Yuan Shen
Cheng-Lin Liu
Publikationsdatum
04.08.2017
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9491-3

Weitere Artikel der Ausgabe 2/2018

Cognitive Computation 2/2018 Zur Ausgabe

Premium Partner