Skip to main content
Erschienen in: Rare Metals 5/2019

18.03.2019

Preparation of CuS/BiVO4 thin film and its efficacious photoelectrochemical performance in hydrogen generation

verfasst von: Yuan Li, Yue Yang, Jing-Wei Huang, Lei Wang, Hou-De She, Jun-Bo Zhong, Qi-Zhao Wang

Erschienen in: Rare Metals | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To drive photoelectrochemical water splitting on porous BiVO4 photoanode, we herein prepared a carnation-like CuS powder by hydrothermal method and then loaded it onto BiVO4 photoelectrode. Expectedly, the CuS/BiVO4 composite not only presents a higher photocurrent response value at 1.23 V versus RHE (reversible hydrogen electrode) than pure BiVO4 electrode under visible light irradiation, but also exhibits an excellent photoelectrochemical hydrogen production activity in comparison with either the BiVO4 or the CuS. The high ameliorated performance of CuS/BiVO4 composite may be due to the strong absorption of visible light and an effective abatement in combination of carriers. These results demonstrate an effective potential approach to design and construct efficient photoelectrochemical (PEC) systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Suzuki TM, Saeki S, Sekizawa K, Kitazumi K, Takahashi N, Morikawa T. Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-type N-doped Ta2O5 photocathode active under visible light irradiation. Appl Catal B. 2017;202:597.CrossRef Suzuki TM, Saeki S, Sekizawa K, Kitazumi K, Takahashi N, Morikawa T. Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-type N-doped Ta2O5 photocathode active under visible light irradiation. Appl Catal B. 2017;202:597.CrossRef
[2]
Zurück zum Zitat Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):014.CrossRef Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):014.CrossRef
[3]
Zurück zum Zitat Sun L, Wu Z, Xiang S, Yu J, Wang Y, Lin C, Lin Z. High-efficiency photoelectrochemical hydrogen generation enabled by p-type semiconductor nanoparticle-decorated n-type nanotube arrays. RSC Adv. 2017;7(28):17551.CrossRef Sun L, Wu Z, Xiang S, Yu J, Wang Y, Lin C, Lin Z. High-efficiency photoelectrochemical hydrogen generation enabled by p-type semiconductor nanoparticle-decorated n-type nanotube arrays. RSC Adv. 2017;7(28):17551.CrossRef
[4]
Zurück zum Zitat Veeramani V, Yu H, Hu S, Liu R. Highly efficient photoelectrochemical hydrogen generation reaction using tungsten phosphosulfide nanosheets. ACS Appl Mater Interfaces. 2018;10(20):17280.CrossRef Veeramani V, Yu H, Hu S, Liu R. Highly efficient photoelectrochemical hydrogen generation reaction using tungsten phosphosulfide nanosheets. ACS Appl Mater Interfaces. 2018;10(20):17280.CrossRef
[5]
Zurück zum Zitat Dong Z, Ding D, Li T, Ning C. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Appl Surf Sci. 2018;436:125.CrossRef Dong Z, Ding D, Li T, Ning C. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Appl Surf Sci. 2018;436:125.CrossRef
[6]
Zurück zum Zitat Liu Q, Shen J, Yang X, Zhang T, Tang H. 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Appl Catal B. 2018;232:62. Liu Q, Shen J, Yang X, Zhang T, Tang H. 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Appl Catal B. 2018;232:62.
[7]
Zurück zum Zitat Yang X, Tian L, Zhao X, Tang H, Liu Q, Li G. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl Catal B. 2019;244:240.CrossRef Yang X, Tian L, Zhao X, Tang H, Liu Q, Li G. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl Catal B. 2019;244:240.CrossRef
[8]
Zurück zum Zitat Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011;11(11):4978.CrossRef Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011;11(11):4978.CrossRef
[9]
Zurück zum Zitat Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small. 2012;8(1):37.CrossRef Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small. 2012;8(1):37.CrossRef
[10]
Zurück zum Zitat Pan J, Dong Z, Wang B, Jiang Z, Zhao C, Wang J, Song C, Zheng Y, Li C. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl Catal B. 2019;242:93.CrossRef Pan J, Dong Z, Wang B, Jiang Z, Zhao C, Wang J, Song C, Zheng Y, Li C. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl Catal B. 2019;242:93.CrossRef
[11]
Zurück zum Zitat Morita K, Takijiri K, Sakai K, Ozawa H. A platinum porphyrin modified TiO2 electrode for photoelectrochemical hydrogen production from neutral water driven by the conduction band edge potential of TiO2. Dalton Trans. 2017;46(44):15181.CrossRef Morita K, Takijiri K, Sakai K, Ozawa H. A platinum porphyrin modified TiO2 electrode for photoelectrochemical hydrogen production from neutral water driven by the conduction band edge potential of TiO2. Dalton Trans. 2017;46(44):15181.CrossRef
[12]
Zurück zum Zitat Wang L, Duan S, Jin P, She H, Huang J, Lei Z, Zhang T, Wang Q. Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl Catal B. 2018;239:599.CrossRef Wang L, Duan S, Jin P, She H, Huang J, Lei Z, Zhang T, Wang Q. Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl Catal B. 2018;239:599.CrossRef
[13]
Zurück zum Zitat She H, Zhou H, Li L, Zhao Z, Jiang M, Huang J, Wang L, Wang Q. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustainable Chemistry & Engineering. 2019;7:650.CrossRef She H, Zhou H, Li L, Zhao Z, Jiang M, Huang J, Wang L, Wang Q. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustainable Chemistry & Engineering. 2019;7:650.CrossRef
[14]
Zurück zum Zitat Chakrapani V, Thangala J, Sunkara MK. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int J Hydrogen Energy. 2009;34(22):9050.CrossRef Chakrapani V, Thangala J, Sunkara MK. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int J Hydrogen Energy. 2009;34(22):9050.CrossRef
[15]
Zurück zum Zitat Fuku K, Miyase Y, Miseki Y, Funaki T, Gunji T, Sayama K. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem Asian J. 2017;12:1111.CrossRef Fuku K, Miyase Y, Miseki Y, Funaki T, Gunji T, Sayama K. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chem Asian J. 2017;12:1111.CrossRef
[16]
Zurück zum Zitat Zhang R, Ning F, Xu S, Zhou L, Shao M, Wei M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim Acta. 2018;274:217.CrossRef Zhang R, Ning F, Xu S, Zhou L, Shao M, Wei M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim Acta. 2018;274:217.CrossRef
[17]
Zurück zum Zitat Tahir AA, Wijayantha KGU, Saremi-Yarahmadi S, Mazhar M, McKee V. Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater. 2009;21(16):3763.CrossRef Tahir AA, Wijayantha KGU, Saremi-Yarahmadi S, Mazhar M, McKee V. Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater. 2009;21(16):3763.CrossRef
[18]
Zurück zum Zitat Chemelewski WD, Hahn NT, Mullins CB. Effect of Si doping and porosity on hematite’s (α-Fe2O3) photoelectrochemical water oxidation performance. J Phys Chem C. 2012;116(8):5255.CrossRef Chemelewski WD, Hahn NT, Mullins CB. Effect of Si doping and porosity on hematite’s (α-Fe2O3) photoelectrochemical water oxidation performance. J Phys Chem C. 2012;116(8):5255.CrossRef
[19]
Zurück zum Zitat Liao A, He H, Fan Z, Xu G, Li L, Chen J, Han Q, Chen X, Zhou Y, Zou Z. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal. 2017;352:114.CrossRef Liao A, He H, Fan Z, Xu G, Li L, Chen J, Han Q, Chen X, Zhou Y, Zou Z. Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J Catal. 2017;352:114.CrossRef
[20]
Zurück zum Zitat Zhang P, Yu L, Lou XWD. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation. Angew Chem Int Ed. 2018;57:15296.CrossRef Zhang P, Yu L, Lou XWD. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation. Angew Chem Int Ed. 2018;57:15296.CrossRef
[21]
Zurück zum Zitat Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett. 2010;1(17):2607.CrossRef Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett. 2010;1(17):2607.CrossRef
[22]
Zurück zum Zitat Yang J, Wu J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy. 2017;32:232.CrossRef Yang J, Wu J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy. 2017;32:232.CrossRef
[23]
Zurück zum Zitat Wang S, He T, Yun J-H, Hu Y, Xiao M, Du A, Wang L. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv Func Mater. 2018;28:1802685.CrossRef Wang S, He T, Yun J-H, Hu Y, Xiao M, Du A, Wang L. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv Func Mater. 2018;28:1802685.CrossRef
[24]
Zurück zum Zitat Wang M, Wang Q, Guo P, Jiao Z. In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting. Journal of Colloid Interface Science. 2019;534:238. Wang M, Wang Q, Guo P, Jiao Z. In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting. Journal of Colloid Interface Science. 2019;534:238.
[25]
Zurück zum Zitat Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun. 2014;5:5775.CrossRef Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun. 2014;5:5775.CrossRef
[26]
Zurück zum Zitat Wang Q, Niu T, Wang L, Huang J, She H. NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting. Chin J Catal. 2018;39(4):613.CrossRef Wang Q, Niu T, Wang L, Huang J, She H. NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting. Chin J Catal. 2018;39(4):613.CrossRef
[27]
Zurück zum Zitat Jo WJ, Jang JW, Kong KJ, Kang HJ, Kim JY, Jun H, Parmar KP, Lee JS. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem Int Ed. 2012;51:3147.CrossRef Jo WJ, Jang JW, Kong KJ, Kang HJ, Kim JY, Jun H, Parmar KP, Lee JS. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew Chem Int Ed. 2012;51:3147.CrossRef
[28]
Zurück zum Zitat She H, Sun Y, Li S, Huang J, Wang L, Zhu G, Wang Q. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl Catal B. 2019;245:439.CrossRef She H, Sun Y, Li S, Huang J, Wang L, Zhu G, Wang Q. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl Catal B. 2019;245:439.CrossRef
[29]
Zurück zum Zitat Singh S, Sharma R, Mehta BR. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO4 leads to improved photocatalytic performance. Appl Surf Sci. 2017;411(31):321.CrossRef Singh S, Sharma R, Mehta BR. Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO4 leads to improved photocatalytic performance. Appl Surf Sci. 2017;411(31):321.CrossRef
[30]
Zurück zum Zitat Wang Q, He J, Shi Y, Zhang S, Niu T, She H, Bi Y. Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chem Eng J. 2017;326:412. Wang Q, He J, Shi Y, Zhang S, Niu T, She H, Bi Y. Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chem Eng J. 2017;326:412.
[31]
Zurück zum Zitat Yang J, Ma S, Liu K, Liang Q, Wang J, Mao C. Preparation and properties of ZrH2/W/B4C/Al composite. Chin J Rare Metals. 2018;42(12):1267. Yang J, Ma S, Liu K, Liang Q, Wang J, Mao C. Preparation and properties of ZrH2/W/B4C/Al composite. Chin J Rare Metals. 2018;42(12):1267.
[32]
Zurück zum Zitat Wang Q, Niu T, Wang L, Yan C, Huang J, He J, She H, Su B, Bi Y. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem Eng J. 2018;337:506.CrossRef Wang Q, Niu T, Wang L, Yan C, Huang J, He J, She H, Su B, Bi Y. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem Eng J. 2018;337:506.CrossRef
[33]
Zurück zum Zitat Wang Q, He J, Shi Y, Zhang S, Niu T, She H, Bi Y, Lei Z. Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity. Appl Catal B. 2017;214:159. Wang Q, He J, Shi Y, Zhang S, Niu T, She H, Bi Y, Lei Z. Synthesis of MFe2O4 (M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity. Appl Catal B. 2017;214:159.
[34]
Zurück zum Zitat Liu C, Li J, Li Y, Li W, Yang Y, Chen Q. Epitaxial growth of Bi2S3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance. RSC Adv. 2015;5:71692.CrossRef Liu C, Li J, Li Y, Li W, Yang Y, Chen Q. Epitaxial growth of Bi2S3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance. RSC Adv. 2015;5:71692.CrossRef
[35]
Zurück zum Zitat Hu X, Shen Y, Xu L, Wang L, Lu L, Zhang Y. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications. Appl Surf Sci. 2016;385:162.CrossRef Hu X, Shen Y, Xu L, Wang L, Lu L, Zhang Y. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications. Appl Surf Sci. 2016;385:162.CrossRef
[36]
Zurück zum Zitat Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int J Hydrogen Energy. 2013;38(25):10739.CrossRef Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int J Hydrogen Energy. 2013;38(25):10739.CrossRef
[37]
Zurück zum Zitat An L, Huang L, Zhou P, Yin J, Liu H, Xi P. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv Func Mater. 2015;25(45):6814.CrossRef An L, Huang L, Zhou P, Yin J, Liu H, Xi P. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv Func Mater. 2015;25(45):6814.CrossRef
[38]
Zurück zum Zitat Lu YY, Zhang YY, Zhang J, Shi Y, Li Z, Feng ZC, Li C. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance. Appl Surf Sci. 2016;370:313.CrossRef Lu YY, Zhang YY, Zhang J, Shi Y, Li Z, Feng ZC, Li C. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance. Appl Surf Sci. 2016;370:313.CrossRef
[39]
Zurück zum Zitat Wang Q, Shi Y, Pu L, Ta Y, He J, Zhang S, Zhong J, Li J, Su B. Fabrication of the carnation-like CCN-CuS p–n heterojunctions with enhanced photocatalytic performance under visible light irradiation. Appl Surf Sci. 2016;367:163. Wang Q, Shi Y, Pu L, Ta Y, He J, Zhang S, Zhong J, Li J, Su B. Fabrication of the carnation-like CCN-CuS p–n heterojunctions with enhanced photocatalytic performance under visible light irradiation. Appl Surf Sci. 2016;367:163.
[40]
Zurück zum Zitat Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS. Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal. 2014;317:126.CrossRef Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS. Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal. 2014;317:126.CrossRef
[41]
Zurück zum Zitat Lai C, Zhang M, Li B, Huang D, Zeng G, Qin L, Liu X, Yi H, Cheng M, Li L, Chen Z, Chen L. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem Eng J. 2019;358:900.CrossRef Lai C, Zhang M, Li B, Huang D, Zeng G, Qin L, Liu X, Yi H, Cheng M, Li L, Chen Z, Chen L. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem Eng J. 2019;358:900.CrossRef
[42]
Zurück zum Zitat Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014;14:1099.CrossRef Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014;14:1099.CrossRef
[43]
Zurück zum Zitat Reddy CV, Shim J, Cho M. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles. J Phys Chem Solids. 2017;103:213.CrossRef Reddy CV, Shim J, Cho M. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles. J Phys Chem Solids. 2017;103:213.CrossRef
[44]
Zurück zum Zitat Pareek A, Dom R, Borse PH. Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrogen Energy. 2013;38(1):36.CrossRef Pareek A, Dom R, Borse PH. Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrogen Energy. 2013;38(1):36.CrossRef
Metadaten
Titel
Preparation of CuS/BiVO4 thin film and its efficacious photoelectrochemical performance in hydrogen generation
verfasst von
Yuan Li
Yue Yang
Jing-Wei Huang
Lei Wang
Hou-De She
Jun-Bo Zhong
Qi-Zhao Wang
Publikationsdatum
18.03.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01224-3

Weitere Artikel der Ausgabe 5/2019

Rare Metals 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.