Skip to main content
Erschienen in: Rare Metals 3/2020

03.02.2020

Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys

verfasst von: Zi-Yi Zhu, Li Meng, Leng Chen

Erschienen in: Rare Metals | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The nucleation, variant selection, and orientation dependence of the strain-induced martensitic transformation (SIMT) process in biomedical Co–Cr–W–Ni alloys were investigated. The experimental results show that the ε-hexagonal-close-packed phase was preferentially formed at the Σ3 twin boundaries and high-angle grain boundaries during the tensile process. The theoretical analysis shows that the variant selection of SIMT is governed by Schmid’s law. However, the SIMTed ε-phase did not form equally on the two sides of the annealing twins, even though they had the same Schmid factor. This phenomenon is related to the mechanical work developed by the formation of the ε-phase. Only the side which has both high Schmid factor and high mechanical work can initiate the SIMT process. A strong 〈111〉 fiber texture was formed, and the ε-variants tended to appear in grains with orientations close to the 〈111〉 and 〈100〉 directions during the tensile process. These results can provide theoretical guidance for controlling the SIMT process of Co–Cr–W–Ni alloys to fabricate more reliable stents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Wang Z, Xu XW, Zhang B. Hot compression deformation behavior of biomedical Ni–Ti alloy. Rare Met. 2019;38(7):609.CrossRef Wang Z, Xu XW, Zhang B. Hot compression deformation behavior of biomedical Ni–Ti alloy. Rare Met. 2019;38(7):609.CrossRef
[2]
Zurück zum Zitat Ma XQ, Niu HZ, Yu ZT, Yu S, Wang C. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β–Ti alloy sheet. Rare Met. 2018;37(10):846.CrossRef Ma XQ, Niu HZ, Yu ZT, Yu S, Wang C. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β–Ti alloy sheet. Rare Met. 2018;37(10):846.CrossRef
[3]
Zurück zum Zitat Li BQ, Li CL, Wang ZX, Lu X. Preparation of Ti–Nb–Ta–Zr alloys for load-bearing biomedical applications. Rare Met. 2019;38(6):571.CrossRef Li BQ, Li CL, Wang ZX, Lu X. Preparation of Ti–Nb–Ta–Zr alloys for load-bearing biomedical applications. Rare Met. 2019;38(6):571.CrossRef
[4]
Zurück zum Zitat Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.CrossRef Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.CrossRef
[5]
Zurück zum Zitat Zhao DP, Tang JC, Nie HM, Zhang Y, Chen YK, Zhang X, Li HX, Yan M. Macro-micron-nano-featured surface topography of Ti–6Al–4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.CrossRef Zhao DP, Tang JC, Nie HM, Zhang Y, Chen YK, Zhang X, Li HX, Yan M. Macro-micron-nano-featured surface topography of Ti–6Al–4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.CrossRef
[6]
Zurück zum Zitat Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.CrossRef Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.CrossRef
[7]
Zurück zum Zitat Huang L, Su K, Zheng YF, Yeung KWK, Liu MX. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.CrossRef Huang L, Su K, Zheng YF, Yeung KWK, Liu MX. Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility. Rare Met. 2019;38(6):588.CrossRef
[8]
Zurück zum Zitat Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.CrossRef Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.CrossRef
[9]
Zurück zum Zitat Marrey RV, Burgermeister R, Grishaber RB, Ritchie RO. Fatigue and life prediction for cobalt–chromium stents: a fracture mechanics analysis. Biomaterials. 2006;27(9):1988.CrossRef Marrey RV, Burgermeister R, Grishaber RB, Ritchie RO. Fatigue and life prediction for cobalt–chromium stents: a fracture mechanics analysis. Biomaterials. 2006;27(9):1988.CrossRef
[10]
Zurück zum Zitat Byadretdinova MA, Ivanova RG, Lofis NA, Molotilov BV. Artificial heart valve made of Co–Cr–W–Ni alloy. Biomed Eng. 1986;20(1):21.CrossRef Byadretdinova MA, Ivanova RG, Lofis NA, Molotilov BV. Artificial heart valve made of Co–Cr–W–Ni alloy. Biomed Eng. 1986;20(1):21.CrossRef
[11]
Zurück zum Zitat Zaman HA, Sharif S, Idris MH, Kamarudin A. Metallic biomaterials for medical implant applications: a review. Appl Mech Mater. 2015;735:19.CrossRef Zaman HA, Sharif S, Idris MH, Kamarudin A. Metallic biomaterials for medical implant applications: a review. Appl Mech Mater. 2015;735:19.CrossRef
[12]
Zurück zum Zitat Narushima T, Mineta S, Kurihara Y, Ueda K. Precipitates in biomedical Co–Cr alloys. J Miner. 2013;65(4):489. Narushima T, Mineta S, Kurihara Y, Ueda K. Precipitates in biomedical Co–Cr alloys. J Miner. 2013;65(4):489.
[13]
Zurück zum Zitat Zafarghandi MS, Abbasi SM, Momeni A. Effects of Nb on hot tensile deformation behavior of cast Haynes 25 Co–Cr–W–Ni alloy. J Alloys Compd. 2019;774:18.CrossRef Zafarghandi MS, Abbasi SM, Momeni A. Effects of Nb on hot tensile deformation behavior of cast Haynes 25 Co–Cr–W–Ni alloy. J Alloys Compd. 2019;774:18.CrossRef
[14]
Zurück zum Zitat Kumar VA, Gupta RK, Murty SVSN, Prasad AD. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy. J Alloys Compd. 2016;676:527.CrossRef Kumar VA, Gupta RK, Murty SVSN, Prasad AD. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy. J Alloys Compd. 2016;676:527.CrossRef
[15]
Zurück zum Zitat Geetha M, Durgalakshmi D, Asokamani R. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci. 2010;2:40.CrossRef Geetha M, Durgalakshmi D, Asokamani R. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci. 2010;2:40.CrossRef
[16]
Zurück zum Zitat Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co–20Cr–15W–10Ni alloy for biomedical application. Metall Mater Trans A. 2016;47(6):2773.CrossRef Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co–20Cr–15W–10Ni alloy for biomedical application. Metall Mater Trans A. 2016;47(6):2773.CrossRef
[17]
Zurück zum Zitat Teague J, Cerreta E, Stout M. Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times. Metall Mater Trans A. 2004;35(9):2767.CrossRef Teague J, Cerreta E, Stout M. Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times. Metall Mater Trans A. 2004;35(9):2767.CrossRef
[18]
Zurück zum Zitat Gupta RK, Karthikeyan MK, Bhalia DN, Ghosh BR, Sinha PP. Effect of microstructure on mechanical properties of refractory Co–Cr–W–Ni alloy. Met Sci Heat Treat. 2008;50(3–4):175.CrossRef Gupta RK, Karthikeyan MK, Bhalia DN, Ghosh BR, Sinha PP. Effect of microstructure on mechanical properties of refractory Co–Cr–W–Ni alloy. Met Sci Heat Treat. 2008;50(3–4):175.CrossRef
[19]
Zurück zum Zitat Ueki K, Ueda K, Narushima T. Precipitate phases and mechanical properties of heat-treated ASTM F 90 Co–Cr–W–Ni alloy. Key Eng Mater. 2014;616:282.CrossRef Ueki K, Ueda K, Narushima T. Precipitate phases and mechanical properties of heat-treated ASTM F 90 Co–Cr–W–Ni alloy. Key Eng Mater. 2014;616:282.CrossRef
[20]
Zurück zum Zitat Yamanaka K, Mori M, Kuramoto K, Chiba A. Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des. 2014;55:987.CrossRef Yamanaka K, Mori M, Kuramoto K, Chiba A. Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater Des. 2014;55:987.CrossRef
[21]
Zurück zum Zitat Kurosu S, Nomura N, Chiba A. Effect of sigma phase in Co–29Cr–6Mo alloy on corrosion behavior in saline solution. Mater Trans. 2006;47(8):1961.CrossRef Kurosu S, Nomura N, Chiba A. Effect of sigma phase in Co–29Cr–6Mo alloy on corrosion behavior in saline solution. Mater Trans. 2006;47(8):1961.CrossRef
[22]
Zurück zum Zitat Ueki K, Ueda K, Nakai M, Nakano T, Narushima T. Microstructural changes during plastic deformation and corrosion properties of biomedical Co–20Cr–15W–10Ni alloy heat-treated at 873 K. Metall Mater Trans A. 2018;49(6):2393.CrossRef Ueki K, Ueda K, Nakai M, Nakano T, Narushima T. Microstructural changes during plastic deformation and corrosion properties of biomedical Co–20Cr–15W–10Ni alloy heat-treated at 873 K. Metall Mater Trans A. 2018;49(6):2393.CrossRef
[23]
Zurück zum Zitat Yamanaka K, Mori M, Chiba A. Enhanced mechanical properties of as-forged Co–Cr–Mo–N alloys with ultrafine-grained structures. Metall Mater Trans A. 2012;43(13):5243.CrossRef Yamanaka K, Mori M, Chiba A. Enhanced mechanical properties of as-forged Co–Cr–Mo–N alloys with ultrafine-grained structures. Metall Mater Trans A. 2012;43(13):5243.CrossRef
[24]
Zurück zum Zitat Hagihara K, Nakano T, Sasaki K. Anomalous strengthening behavior of Co–Cr–Mo alloy single crystals for biomedical applications. Scr Mater. 2016;123:149.CrossRef Hagihara K, Nakano T, Sasaki K. Anomalous strengthening behavior of Co–Cr–Mo alloy single crystals for biomedical applications. Scr Mater. 2016;123:149.CrossRef
[25]
Zurück zum Zitat Mori M, Yamanaka K, Sato S, Tsubaki S, Satoh K, Imafuku M, Shobu T, Chiba A. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. J Mech Behav Biomed Mater. 2019;90:523.CrossRef Mori M, Yamanaka K, Sato S, Tsubaki S, Satoh K, Imafuku M, Shobu T, Chiba A. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. J Mech Behav Biomed Mater. 2019;90:523.CrossRef
[26]
Zurück zum Zitat Yamanaka K, Mori M, Sato S, Chiba A. Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci Rep. 2017;7(1):10808.CrossRef Yamanaka K, Mori M, Sato S, Chiba A. Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci Rep. 2017;7(1):10808.CrossRef
[27]
Zurück zum Zitat Yamanaka K, Mori M, Koizumi Y, Chiba A. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys. J Mech Behav Biomed Mater. 2014;32:52.CrossRef Yamanaka K, Mori M, Koizumi Y, Chiba A. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys. J Mech Behav Biomed Mater. 2014;32:52.CrossRef
[28]
Zurück zum Zitat Putaux JL, Chevalier JP. HREM study of self accommodated thermal ε-martensite in an Fe–Mn–Si–Cr–Ni shape memory alloy. Acta Mater. 1996;44(4):1701.CrossRef Putaux JL, Chevalier JP. HREM study of self accommodated thermal ε-martensite in an Fe–Mn–Si–Cr–Ni shape memory alloy. Acta Mater. 1996;44(4):1701.CrossRef
[29]
Zurück zum Zitat Rajan K. Phase transformations in a wrought Co–Cr–Mo–C alloy. Metall Trans A. 1982;13(7):1161.CrossRef Rajan K. Phase transformations in a wrought Co–Cr–Mo–C alloy. Metall Trans A. 1982;13(7):1161.CrossRef
[30]
Zurück zum Zitat Lee BS, Matsumoto H, Chiba A. Fractures in tensile deformation of biomedical Co–Cr–Mo–N alloys. Mater Lett. 2011;65(5):843.CrossRef Lee BS, Matsumoto H, Chiba A. Fractures in tensile deformation of biomedical Co–Cr–Mo–N alloys. Mater Lett. 2011;65(5):843.CrossRef
[31]
Zurück zum Zitat Lee BS, Koizumi Y, Matsumoto H, Chiba A. Collective behavior of strain-induced martensitic transformation (SIMT) in biomedical Co–Cr–Mo–N alloy polycrystal: an ex situ electron backscattering diffraction study. Mater Sci Eng A. 2014;611:263.CrossRef Lee BS, Koizumi Y, Matsumoto H, Chiba A. Collective behavior of strain-induced martensitic transformation (SIMT) in biomedical Co–Cr–Mo–N alloy polycrystal: an ex situ electron backscattering diffraction study. Mater Sci Eng A. 2014;611:263.CrossRef
[32]
Zurück zum Zitat Favre J, Koizumi Y, Chiba A, Fabregue D, Maire E. Deformation behavior and dynamic recrystallization of biomedical Co–Cr–W–Ni (L-605) alloy. Metall Mater Trans A. 2003;44(6):2819.CrossRef Favre J, Koizumi Y, Chiba A, Fabregue D, Maire E. Deformation behavior and dynamic recrystallization of biomedical Co–Cr–W–Ni (L-605) alloy. Metall Mater Trans A. 2003;44(6):2819.CrossRef
[33]
Zurück zum Zitat Koizumi Y, Suzuki S, Yamanaka K, Lee BS, Sato Y, Li YP, Kurosu S, Matsumoto H, Chiba A. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater. 2013;61(5):1648.CrossRef Koizumi Y, Suzuki S, Yamanaka K, Lee BS, Sato Y, Li YP, Kurosu S, Matsumoto H, Chiba A. Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Mater. 2013;61(5):1648.CrossRef
[34]
Zurück zum Zitat Wright SI, Larsen RJ. Extracting twins from orientation imaging microscopy scan data. J Microsc. 2002;205(3):245.CrossRef Wright SI, Larsen RJ. Extracting twins from orientation imaging microscopy scan data. J Microsc. 2002;205(3):245.CrossRef
[35]
Zurück zum Zitat Humbert M, Petit B, Bolle B, Gey N. Analysis of the γ–ɛ–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at − 60 °C. Mater Sci Eng, A. 2007;454:508.CrossRef Humbert M, Petit B, Bolle B, Gey N. Analysis of the γ–ɛ–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at − 60 °C. Mater Sci Eng, A. 2007;454:508.CrossRef
Metadaten
Titel
Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys
verfasst von
Zi-Yi Zhu
Li Meng
Leng Chen
Publikationsdatum
03.02.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01364-6

Weitere Artikel der Ausgabe 3/2020

Rare Metals 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.