Skip to main content
Erschienen in: Rare Metals 4/2020

01.04.2020

A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction

verfasst von: Wei Hua, Huan-Huan Sun, Fei Xu, Jian-Gan Wang

Erschienen in: Rare Metals | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.
[2]
Zurück zum Zitat Yang C, Gao K, Zhang X, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459. Yang C, Gao K, Zhang X, Sun Z, Zhang T. Rechargeable solid-state Li-air batteries: a status report. Rare Met. 2018;37(6):459.
[4]
Zurück zum Zitat Wang Y, Kong B, Zhao D, Wang H, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today. 2017;15:26. Wang Y, Kong B, Zhao D, Wang H, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today. 2017;15:26.
[5]
Zurück zum Zitat Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.
[6]
Zurück zum Zitat Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.
[7]
Zurück zum Zitat Chia X, Eng AYS, Ambrosi A, Tan SM, Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev. 2015;115(21):11941. Chia X, Eng AYS, Ambrosi A, Tan SM, Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev. 2015;115(21):11941.
[8]
Zurück zum Zitat Geng X, Zhang Y, Han Y, Li J, Yang L, Benamara M, Chen L, Zhu H. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 2017;17(3):1825. Geng X, Zhang Y, Han Y, Li J, Yang L, Benamara M, Chen L, Zhu H. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett. 2017;17(3):1825.
[9]
Zurück zum Zitat Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544(7648):80. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature. 2017;544(7648):80.
[10]
Zurück zum Zitat Liu Q, Wang W, Yang Y, Liu X, Xu S. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019;38(1):1. Liu Q, Wang W, Yang Y, Liu X, Xu S. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Met. 2019;38(1):1.
[11]
Zurück zum Zitat Sun HH, Wang JG, Zhang Y, Hua W, Li YY, Liu HY. Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J Mater Chem A. 2018;6(27):13419. Sun HH, Wang JG, Zhang Y, Hua W, Li YY, Liu HY. Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J Mater Chem A. 2018;6(27):13419.
[12]
Zurück zum Zitat He J, Li P, Lv W, Wen K, Chen Y, Zhang W, Li Y, Qin W, He W. Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim Acta. 2016;215:12. He J, Li P, Lv W, Wen K, Chen Y, Zhang W, Li Y, Qin W, He W. Three-dimensional hierarchically structured aerogels constructed with layered MoS2/graphene nanosheets as free-standing anodes for high-performance lithium ion batteries. Electrochim Acta. 2016;215:12.
[13]
Zurück zum Zitat He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344.
[14]
Zurück zum Zitat Yu B, Chen Y, Wang Z, Chen D, Wang X, Zhang W, He J, He W. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J Power Sour. 2020;447:227364. Yu B, Chen Y, Wang Z, Chen D, Wang X, Zhang W, He J, He W. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J Power Sour. 2020;447:227364.
[15]
Zurück zum Zitat Yu B, Yang D, Hu Y, He J, Chen Y, He W. Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage. Small Methods. 2019;3(2):1800287. Yu B, Yang D, Hu Y, He J, Chen Y, He W. Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage. Small Methods. 2019;3(2):1800287.
[16]
Zurück zum Zitat Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.
[17]
Zurück zum Zitat Brown DE, Mahmood MN, Man MCM, Turner AK. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta. 1984;29(11):1551. Brown DE, Mahmood MN, Man MCM, Turner AK. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions. Electrochim Acta. 1984;29(11):1551.
[18]
Zurück zum Zitat Fang M, Gao W, Dong G, Xia Z, Yip S, Qin Y, Qu Y, Ho JC. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy. 2016;27:247. Fang M, Gao W, Dong G, Xia Z, Yip S, Qin Y, Qu Y, Ho JC. Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy. 2016;27:247.
[19]
Zurück zum Zitat Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8(1):15437. Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E, Feng X. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun. 2017;8(1):15437.
[20]
Zurück zum Zitat Qi F, Li P, Chen Y, Zheng B, Liu X, Lan F, Lai Z, Xu Y, Liu J, Zhou J, He J, Zhang W. Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method. Vacuum. 2015;119:204. Qi F, Li P, Chen Y, Zheng B, Liu X, Lan F, Lai Z, Xu Y, Liu J, Zhou J, He J, Zhang W. Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method. Vacuum. 2015;119:204.
[21]
Zurück zum Zitat Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308.
[22]
Zurück zum Zitat Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963.
[23]
Zurück zum Zitat Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807.
[24]
Zurück zum Zitat Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.
[25]
Zurück zum Zitat Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013;13(12):6222.
[26]
Zurück zum Zitat Bonde J, Moses PG, Jaramillo TF, Nørskovb JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfide. Faraday Discuss. 2008;140:9. Bonde J, Moses PG, Jaramillo TF, Nørskovb JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfide. Faraday Discuss. 2008;140:9.
[27]
Zurück zum Zitat Tsai C, Chan K, Nørskov JK, Abild-Pedersen F. Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol. 2015;5(1):246. Tsai C, Chan K, Nørskov JK, Abild-Pedersen F. Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol. 2015;5(1):246.
[28]
Zurück zum Zitat Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, Zeng X, Xie Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale. 2014;6(14):8359. Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, Zeng X, Xie Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale. 2014;6(14):8359.
[29]
Zurück zum Zitat Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc. 2013;135(47):17881. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc. 2013;135(47):17881.
[30]
Zurück zum Zitat Yan Y, Ge X, Liu Z, Wang JY, Lee JM, Wang X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale. 2013;5(17):7768. Yan Y, Ge X, Liu Z, Wang JY, Lee JM, Wang X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale. 2013;5(17):7768.
[31]
Zurück zum Zitat Zhu H, Du M, Zhang M, Zou M, Yang T, Fu Y, Yao J. The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. J Mater Chem A. 2014;2(21):7680. Zhu H, Du M, Zhang M, Zou M, Yang T, Fu Y, Yao J. The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. J Mater Chem A. 2014;2(21):7680.
[32]
Zurück zum Zitat Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater. 2014;26(7):2344. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater. 2014;26(7):2344.
[33]
Zurück zum Zitat Bian X, Zhu J, Liao L, Scanlon MD, Ge P, Ji C, Girault HH, Liu B. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution. Electrochim Commun. 2012;22:128. Bian X, Zhu J, Liao L, Scanlon MD, Ge P, Ji C, Girault HH, Liu B. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution. Electrochim Commun. 2012;22:128.
[34]
Zurück zum Zitat Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale. 2014;6(11):5624. Ma CB, Qi X, Chen B, Bao S, Yin Z, Wu XJ, Luo Z, Wei J, Zhang HL, Zhang H. MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale. 2014;6(11):5624.
[35]
Zurück zum Zitat Yan Y, Xia BY, Li N, Xu Z, Fisher A, Wang X. Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. J Mater Chem A. 2015;3(1):131. Yan Y, Xia BY, Li N, Xu Z, Fisher A, Wang X. Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. J Mater Chem A. 2015;3(1):131.
[36]
Zurück zum Zitat Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano. 2014;8(5):4940. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano. 2014;8(5):4940.
[37]
Zurück zum Zitat Zhang J, Wang T, Liu P, Liu S, Dong R, Zhuang X, Chen M, Feng X. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ Sci. 2016;9(9):2789. Zhang J, Wang T, Liu P, Liu S, Dong R, Zhuang X, Chen M, Feng X. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ Sci. 2016;9(9):2789.
[38]
Zurück zum Zitat Zang Y, Niu S, Wu Y, Zheng X, Cai J, Ye J, Xie Y, Liu Y, Zhou J, Zhu J, Liu X, Wang G, Qian Y. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun. 2019;10(1):1217. Zang Y, Niu S, Wu Y, Zheng X, Cai J, Ye J, Xie Y, Liu Y, Zhou J, Zhu J, Liu X, Wang G, Qian Y. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun. 2019;10(1):1217.
[39]
Zurück zum Zitat Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J. Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017;37:74. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J. Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy. 2017;37:74.
[40]
Zurück zum Zitat Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6701. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed. 2016;55(23):6701.
[41]
Zurück zum Zitat Tsai C, Chan K, Abild-Pedersen F, Norskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156. Tsai C, Chan K, Abild-Pedersen F, Norskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156.
[42]
Zurück zum Zitat Kong D, Wang H, Cha J, Pasta M, Koski K, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013;13(3):1341. Kong D, Wang H, Cha J, Pasta M, Koski K, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013;13(3):1341.
[43]
Zurück zum Zitat Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H, Yan Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J Mater Chem A. 2014;2(16):5597. Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H, Yan Q. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J Mater Chem A. 2014;2(16):5597.
[44]
Zurück zum Zitat Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H, Zeng M, Xie L, Liu Z, Li Y. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015;5(4):2213. Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H, Zeng M, Xie L, Liu Z, Li Y. Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 2015;5(4):2213.
[45]
Zurück zum Zitat Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311. Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311.
[46]
Zurück zum Zitat Zhao G, Wang X, Wang S, Rui K, Chen Y, Yu H, Ma J, Dou SX, Sun W. Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting. Chem Asian J. 2019;14(2):301. Zhao G, Wang X, Wang S, Rui K, Chen Y, Yu H, Ma J, Dou SX, Sun W. Heteroatom-doped MoSe2 nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting. Chem Asian J. 2019;14(2):301.
[47]
Zurück zum Zitat Zhao G, Li P, Rui K, Chen Y, Dou SX, Sun W. CoSe2/MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem Eur J. 2018;24(43):11158. Zhao G, Li P, Rui K, Chen Y, Dou SX, Sun W. CoSe2/MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem Eur J. 2018;24(43):11158.
[48]
Zurück zum Zitat Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed. 2012;51(51):12703. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed. 2012;51(51):12703.
[49]
Zurück zum Zitat Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci. 2014;7(1):387. Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci. 2014;7(1):387.
[50]
Zurück zum Zitat Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano. 2016;10(9):8851. Chen YY, Zhang Y, Jiang WJ, Zhang X, Dai Z, Wan LJ, Hu JS. Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano. 2016;10(9):8851.
[51]
Zurück zum Zitat Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 2016;10(12):11337. Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 2016;10(12):11337.
[52]
Zurück zum Zitat Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015;6(1):6512. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015;6(1):6512.
[53]
Zurück zum Zitat Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(25):6407. Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(25):6407.
[54]
Zurück zum Zitat Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5590. Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater. 2016;26(31):5590.
[55]
Zurück zum Zitat Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci. 2016;7(5):3399. Lin H, Shi Z, He S, Yu X, Wang S, Gao Q, Tang Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci. 2016;7(5):3399.
[56]
Zurück zum Zitat Prins R, Bussell ME. Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett. 2012;142(12):1413. Prins R, Bussell ME. Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett. 2012;142(12):1413.
[57]
Zurück zum Zitat Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci. 2014;7(8):2624. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci. 2014;7(8):2624.
[58]
Zurück zum Zitat Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater. 2014;26(32):5702. Xing Z, Liu Q, Asiri AM, Sun X. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater. 2014;26(32):5702.
[59]
Zurück zum Zitat Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem Int Ed. 2016;55(41):12854. Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem Int Ed. 2016;55(41):12854.
[60]
Zurück zum Zitat Zhang X, Zhou F, Pan W, Liang Y, Wang R. General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater. 2018;28(43):1804600. Zhang X, Zhou F, Pan W, Liang Y, Wang R. General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater. 2018;28(43):1804600.
[61]
Zurück zum Zitat Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(20):5575. Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(20):5575.
[62]
Zurück zum Zitat Park H, Zhang Y, Scheifers JP, Jothi PR, Encinas A, Fokwa BPT. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J Am Chem Soc. 2017;139(37):12915. Park H, Zhang Y, Scheifers JP, Jothi PR, Encinas A, Fokwa BPT. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. J Am Chem Soc. 2017;139(37):12915.
[63]
Zurück zum Zitat Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew Chem Int Ed. 2018;57(2):496. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew Chem Int Ed. 2018;57(2):496.
[64]
Zurück zum Zitat Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed. 2012;51(25):6131. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed. 2012;51(25):6131.
[65]
Zurück zum Zitat Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci. 2014;5(12):4615. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci. 2014;5(12):4615.
[66]
Zurück zum Zitat Xiong J, Cai W, Shi W, Zhang X, Li J, Yang Z, Feng L, Cheng H. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J Mater Chem A. 2017;5(46):24193. Xiong J, Cai W, Shi W, Zhang X, Li J, Yang Z, Feng L, Cheng H. Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction. J Mater Chem A. 2017;5(46):24193.
[67]
Zurück zum Zitat Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(51):19186. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(51):19186.
[68]
Zurück zum Zitat Chang B, Yang J, Shao Y, Zhang L, Fan W, Huang B, Wu Y, Hao X. Bimetallic NiMoN nanowires with preferential reactive facet: an ultra-efficient bifunctional electrocatalyst for overall water splitting. Chemsuschem. 2018;11(18):3198. Chang B, Yang J, Shao Y, Zhang L, Fan W, Huang B, Wu Y, Hao X. Bimetallic NiMoN nanowires with preferential reactive facet: an ultra-efficient bifunctional electrocatalyst for overall water splitting. Chemsuschem. 2018;11(18):3198.
[69]
Zurück zum Zitat Li X, Jiang Y, Jia L, Wang C. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J Power Sour. 2016;304:146. Li X, Jiang Y, Jia L, Wang C. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J Power Sour. 2016;304:146.
[70]
Zurück zum Zitat Wu L, Wang X, Sun Y, Liu Y, Li J. Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale. 2015;7(16):7040. Wu L, Wang X, Sun Y, Liu Y, Li J. Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale. 2015;7(16):7040.
[71]
Zurück zum Zitat Jin Y, Shen PK. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2015;3(40):20080. Jin Y, Shen PK. Nanoflower-like metallic conductive MoO2 as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction. J Mater Chem A. 2015;3(40):20080.
[72]
Zurück zum Zitat Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater. 2016;28(19):3785. Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater. 2016;28(19):3785.
[73]
Zurück zum Zitat Ren B, Li D, Jin Q, Cui H, Wang C. Integrated 3D self-supported Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. J Mater Chem A. 2017;5(46):24453. Ren B, Li D, Jin Q, Cui H, Wang C. Integrated 3D self-supported Ni decorated MoO2 nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution. J Mater Chem A. 2017;5(46):24453.
[74]
Zurück zum Zitat Xie X, Yu R, Xue N, Bin Yousaf A, Du H, Liang K, Jiang N, Xu AW. P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A. 2016;4(5):1647. Xie X, Yu R, Xue N, Bin Yousaf A, Du H, Liang K, Jiang N, Xu AW. P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction. J Mater Chem A. 2016;4(5):1647.
[75]
Zurück zum Zitat Xu B, Sun Y, Chen Z, Zhao S, Yang X, Zhang H, Li C. Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2018;43(45):20721. Xu B, Sun Y, Chen Z, Zhao S, Yang X, Zhang H, Li C. Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2018;43(45):20721.
[76]
Zurück zum Zitat Ou Y, Tian W, Liu L, Zhang Y, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. J Mater Chem A. 2018;6(12):5217. Ou Y, Tian W, Liu L, Zhang Y, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. J Mater Chem A. 2018;6(12):5217.
[77]
Zurück zum Zitat Hua W, Liu H, Wang JG, Wei B. Self-supported Ni(P, O)x·MoOx nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Nanomaterials. 2017;7(12):433. Hua W, Liu H, Wang JG, Wei B. Self-supported Ni(P, O)x·MoOx nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution. Nanomaterials. 2017;7(12):433.
Metadaten
Titel
A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction
verfasst von
Wei Hua
Huan-Huan Sun
Fei Xu
Jian-Gan Wang
Publikationsdatum
01.04.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01384-7

Weitere Artikel der Ausgabe 4/2020

Rare Metals 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.