Skip to main content
Erschienen in: Rare Metals 4/2020

27.03.2020

Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction

verfasst von: Xiao-Rong Zhou, Ze-Xin Feng, Pei-Xin Qin, Han Yan, Shuai Hu, Hui-Xin Guo, Xiao-Ning Wang, Hao-Jiang Wu, Xin Zhang, Hong-Yu Chen, Xue-Peng Qiu, Zhi-Qi Liu

Erschienen in: Rare Metals | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recently reported 9–15 K superconductivity in Nd0.8Sr0.2NiO2/SrTiO3 heterostructures that were fabricated by a soft-chemical topotactic reduction approach based on precursor Nd0.8Sr0.2NiO3 thin films deposited on SrTiO3 substrates, has excited an immediate surge of research interest. To explore an alternative physical path instead of chemical reduction to realizing superconductivity in this compound, using pulsed laser deposition, we systematically fabricated 63 Nd0.8Sr0.2NiOx (NSNO) thin films at a wide range of oxygen partial pressures on various oxide substrates. Transport measurements did not find any signature of superconductivity in all the 63 thin-film samples. With the oxygen content reducing in the NSNO films by lowering the deposition oxygen pressure, the NSNO films are getting more resistive and finally become insulating. Furthermore, we tried to cap a 20-nm-thick amorphous LaAlO3 layer on a Nd0.8Sr0.2NiO3 thin film deposited at a high oxygen pressure of 20 Pa to create oxygen vacancies on its surface and did not succeed in obtaining higher conductivity either. Our experimental results together with the recent report on the absence of superconductivity in synthesized bulk Nd0.8Sr0.2NiO2 crystals suggest that the chemical reduction approach could be unique for yielding superconductivity in NSNO/SrTiO3 heterostructures. However, SrTiO3 substrates could be reduced to generate oxygen vacancies during the chemical reduction process as well, which may thus partially contribute to conductivity.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Zhang FC, Rice TM. Effective Hamiltonian for the superconducting Cu oxides. Phys Rev B. 1988;37(7):3759.CrossRef Zhang FC, Rice TM. Effective Hamiltonian for the superconducting Cu oxides. Phys Rev B. 1988;37(7):3759.CrossRef
[2]
Zurück zum Zitat Hayward MA, Rosseinsky MJ. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 2013;5(6):839.CrossRef Hayward MA, Rosseinsky MJ. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 2013;5(6):839.CrossRef
[3]
Zurück zum Zitat Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, Cui Y, Hikita Y, Hwang HY. Superconductivity in an infinite-layer nickelate. Nature. 2019;572(29):624.CrossRef Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, Cui Y, Hikita Y, Hwang HY. Superconductivity in an infinite-layer nickelate. Nature. 2019;572(29):624.CrossRef
[4]
Zurück zum Zitat Liu Z, Liu C, Lü W, Huang X, Huang Z, Zeng S, Qiu X, Huang L, Annadi A, Chen J, Coey M, Venkatesan T, Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010. Liu Z, Liu C, Lü W, Huang X, Huang Z, Zeng S, Qiu X, Huang L, Annadi A, Chen J, Coey M, Venkatesan T, Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.
[5]
Zurück zum Zitat Liu Z, Leusink D, Wang X, Lü W, Gopinadhan K, Annadi A, Zhao Y, Huang H, Zeng S, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando A. Metal-insulator transition in SrTiO3−x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.CrossRef Liu Z, Leusink D, Wang X, Lü W, Gopinadhan K, Annadi A, Zhao Y, Huang H, Zeng S, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando A. Metal-insulator transition in SrTiO3−x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.CrossRef
[6]
Zurück zum Zitat Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z Phys B. 1986;64(2):189.CrossRef Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z Phys B. 1986;64(2):189.CrossRef
[7]
Zurück zum Zitat Kamihara Y, Watanade T, Hirano M, Hosono H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc. 2008;130(11):3296.CrossRef Kamihara Y, Watanade T, Hirano M, Hosono H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc. 2008;130(11):3296.CrossRef
[8]
Zurück zum Zitat Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. Absence of superconductivity in bulk Nd1−xSrxNiO2 (x = 0.2, 0.4). arXiv. 2019. 1911.02420. Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. Absence of superconductivity in bulk Nd1−xSrxNiO2 (x = 0.2, 0.4). arXiv. 2019. 1911.02420.
[9]
Zurück zum Zitat Liu Z, Lu W, Zeng S, Deng J, Huang Z, Li C, Motapothula M, Lü W, Sun L, Han K, Zhong J, Yang P, Bao N, Chen W, Chen J, Feng Y, Coey M, Venkatesan T, Ariando A. Bandgap control of the oxygen-vacancy-induced two-dimensional electron gas in SrTiO3. Adv Mater Interfaces. 2014;1(6):1400155.CrossRef Liu Z, Lu W, Zeng S, Deng J, Huang Z, Li C, Motapothula M, Lü W, Sun L, Han K, Zhong J, Yang P, Bao N, Chen W, Chen J, Feng Y, Coey M, Venkatesan T, Ariando A. Bandgap control of the oxygen-vacancy-induced two-dimensional electron gas in SrTiO3. Adv Mater Interfaces. 2014;1(6):1400155.CrossRef
[10]
Zurück zum Zitat Ohtomo A, Hwang HY. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 2004;427(29):423.CrossRef Ohtomo A, Hwang HY. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 2004;427(29):423.CrossRef
[11]
Zurück zum Zitat Nakagawa N, Hwang HY, Muller DA. Why some interfaces cannot be sharp. Nat Mater. 2006;5(3):204.CrossRef Nakagawa N, Hwang HY, Muller DA. Why some interfaces cannot be sharp. Nat Mater. 2006;5(3):204.CrossRef
[12]
Zurück zum Zitat Chen ZH, Chen ZH, Liu ZQ, Holtz ME, Li CJ, Wang XR, Lü WM, Motapothula M, Fan LS, Turcaud JA, Dedon LR, Frederick C, Xu RJ, Gao R, N’Diaye AT, Arenholz E, Mundy JA, Venkatesan T, Muller DA, Wang LW, Liu J, Martin LW. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys Rev Lett. 2017;119(15):156801.CrossRef Chen ZH, Chen ZH, Liu ZQ, Holtz ME, Li CJ, Wang XR, Lü WM, Motapothula M, Fan LS, Turcaud JA, Dedon LR, Frederick C, Xu RJ, Gao R, N’Diaye AT, Arenholz E, Mundy JA, Venkatesan T, Muller DA, Wang LW, Liu J, Martin LW. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys Rev Lett. 2017;119(15):156801.CrossRef
[13]
Zurück zum Zitat Chen Y, Pryds N, Kleibeuker JE, Koster G, Sun J, Stamate E, Shen B, Rijnders G, Linderoth S. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett. 2011;11(9):3774.CrossRef Chen Y, Pryds N, Kleibeuker JE, Koster G, Sun J, Stamate E, Shen B, Rijnders G, Linderoth S. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett. 2011;11(9):3774.CrossRef
[14]
Zurück zum Zitat Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(1):95.CrossRef Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(1):95.CrossRef
[15]
Zurück zum Zitat Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Christen HM, Salahuddin S, Bokor JB, Spaldin NA, Schlom DG, Ramesh R. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959.CrossRef Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, Biegalski MD, Aschauer U, Hsu SL, Nowakowski ME, Wu J, Christen HM, Salahuddin S, Bokor JB, Spaldin NA, Schlom DG, Ramesh R. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:5959.CrossRef
[16]
Zurück zum Zitat Liu Z, Li L, Clarkson J, Hsu S, Wong A, Fan L, Lin M, Rouleau C, Ward T, Lee H, Sefat A, Christen H, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.CrossRef Liu Z, Li L, Clarkson J, Hsu S, Wong A, Fan L, Lin M, Rouleau C, Ward T, Lee H, Sefat A, Christen H, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.CrossRef
[17]
Zurück zum Zitat Liu Z, Biegalski MD, Hsu SL, Shang S, Marker C, Liu J, Li L, Fan L, Meyer TL, Wong AT, Nichols JA, Chen D, You L, Chen Z, Wang K, Wang K, Ward TZ, Gai Z, Lee HN, Sefat AS, Lauter V, Liu ZK, Christen HM. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv Mater. 2016;28(1):118.CrossRef Liu Z, Biegalski MD, Hsu SL, Shang S, Marker C, Liu J, Li L, Fan L, Meyer TL, Wong AT, Nichols JA, Chen D, You L, Chen Z, Wang K, Wang K, Ward TZ, Gai Z, Lee HN, Sefat AS, Lauter V, Liu ZK, Christen HM. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv Mater. 2016;28(1):118.CrossRef
[18]
Zurück zum Zitat Liu Z, Liu J, Biegalski M, Hu J, Shang S, Ji Y, Wang J, Hsu S, Wong A, Cordill M, Gludovata B, Marker C, Yan H, Feng Z, You L, Lin M, Ward T, Liu Z, Jiang C, Chen L, Ritchie R, Christen H, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.CrossRef Liu Z, Liu J, Biegalski M, Hu J, Shang S, Ji Y, Wang J, Hsu S, Wong A, Cordill M, Gludovata B, Marker C, Yan H, Feng Z, You L, Lin M, Ward T, Liu Z, Jiang C, Chen L, Ritchie R, Christen H, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.CrossRef
[19]
Zurück zum Zitat Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey M, MacDonald A. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnets above room temperature. Nat Electron. 2018;1(3):172.CrossRef Liu Z, Chen H, Wang J, Liu J, Wang K, Feng Z, Yan H, Wang X, Jiang C, Coey M, MacDonald A. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnets above room temperature. Nat Electron. 2018;1(3):172.CrossRef
[20]
Zurück zum Zitat Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.CrossRef
[21]
Zurück zum Zitat Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.CrossRef Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.CrossRef
[22]
Zurück zum Zitat Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.CrossRef
[23]
Zurück zum Zitat Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.CrossRef Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.CrossRef
[24]
Zurück zum Zitat Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020; 1905603. Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020; 1905603.
[25]
Zurück zum Zitat Feng Z, Yan H, Wang X, Guo H, Qin P, Zhou X, Chen Z, Wang H, Jiao Z, Leng ZGG, Hu Z, Zhang X, Wu H, Chen H, Wang J, Zhang T, Jiang C, Liu Z. Nonvolatile electric control of the anomalous Hall effect in an ultrathin magnetic metal. Adv Electron Mater. 2019;6(2):1901084.CrossRef Feng Z, Yan H, Wang X, Guo H, Qin P, Zhou X, Chen Z, Wang H, Jiao Z, Leng ZGG, Hu Z, Zhang X, Wu H, Chen H, Wang J, Zhang T, Jiang C, Liu Z. Nonvolatile electric control of the anomalous Hall effect in an ultrathin magnetic metal. Adv Electron Mater. 2019;6(2):1901084.CrossRef
[26]
Zurück zum Zitat Feng Z, Zhou X, Šmejkal L, Wu L, Zhu Z, Guo H, González-Hernández R, Wang X, Yan H, Qin P, Zhang X, Wu H, Chen H, Jiang C, Coey M, Sinova J, Jungwirth T, Liu Z. Observation of crystal Hall effect in a collinear antiferromagnets. arXiv. 2020. 2002.08712 Feng Z, Zhou X, Šmejkal L, Wu L, Zhu Z, Guo H, González-Hernández R, Wang X, Yan H, Qin P, Zhang X, Wu H, Chen H, Jiang C, Coey M, Sinova J, Jungwirth T, Liu Z. Observation of crystal Hall effect in a collinear antiferromagnets. arXiv. 2020. 2002.08712
[27]
Zurück zum Zitat Stajic J. Manipulating an antiferromagnet. Science. 2018;360(6386):281. Stajic J. Manipulating an antiferromagnet. Science. 2018;360(6386):281.
[28]
Zurück zum Zitat Stajic J. Strain controls antiferromagnetism. Science. 2019;363(6427):596. Stajic J. Strain controls antiferromagnetism. Science. 2019;363(6427):596.
[29]
[30]
Zurück zum Zitat Sürgers C. Electrical switching of the anomalous Hall effect. Nat Electron. 2018;1(3):154.CrossRef Sürgers C. Electrical switching of the anomalous Hall effect. Nat Electron. 2018;1(3):154.CrossRef
[31]
Zurück zum Zitat Zheng L, Wang X, Lü W, Li C, Paudel T, Liu Z, Huang Z, Zeng S, Han K, Chen Z, Qiu X, Li M, Yang S, Yang B, Chisholm M, Martin L, Pennycook S, Tysmbal E, Coey M, Cao W. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat Commun. 2018;9:1897.CrossRef Zheng L, Wang X, Lü W, Li C, Paudel T, Liu Z, Huang Z, Zeng S, Han K, Chen Z, Qiu X, Li M, Yang S, Yang B, Chisholm M, Martin L, Pennycook S, Tysmbal E, Coey M, Cao W. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat Commun. 2018;9:1897.CrossRef
Metadaten
Titel
Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction
verfasst von
Xiao-Rong Zhou
Ze-Xin Feng
Pei-Xin Qin
Han Yan
Shuai Hu
Hui-Xin Guo
Xiao-Ning Wang
Hao-Jiang Wu
Xin Zhang
Hong-Yu Chen
Xue-Peng Qiu
Zhi-Qi Liu
Publikationsdatum
27.03.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01389-2

Weitere Artikel der Ausgabe 4/2020

Rare Metals 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.