Skip to main content
Erschienen in: Rare Metals 8/2020

23.06.2020

Ru-doped phosphorene for electrochemical ammonia synthesis

verfasst von: Jian-Dong Liu, Zeng-Xi Wei, Yu-Hai Dou, Yue-Zhan Feng, Jian-Min Ma

Erschienen in: Rare Metals | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrochemical ammonia synthesis has attracted increasing attention due to its energy saving characteristics. However, developing novel electrocatalysts and their mechanism remain great challenges. Here, several transition metal (TM) atoms doped on phosphorene were studied as N2 fixation electrocatalysts by using density functional theory (DFT) calculations. The results demonstrate that single Ru atom doped phosphorene shows an excellent catalytic activity for ammonia synthesis via the enzymatic pattern. A small overpotential of 0.696 V is achieved for this process. The effect of oxidation in the catalyst was also discussed in our work. Oxidation deactivates the catalyst, which should be avoided in the experiment. Our outcomes offer a novel perspective for single-atom catalytic ammonia synthesis with phosphorene as a substrate.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 2008;320(5878):889. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 2008;320(5878):889.
[2]
Zurück zum Zitat Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008;1(10):636. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008;1(10):636.
[3]
Zurück zum Zitat Yang YL, Tang Y, Jiang HM, Chen YM, Wan PY, Fan MH, Zhang RR, Ullah S, Pan L, Zou JJ, Lao MM, Sun WP, Yang C, Zheng GF, Peng QL, Wang T, Luo YL, Sun XP, Konev AS, Levin OV, Lianos P, Hu ZF, Shen ZR, Zhao QL, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang HP, Zhang L, Sun SM, Wang WZ, Ma JM. 2020 roadmap on gas-involved photo- and electro-catalysis. Chin. Chem. Lett. 2019;30(12):2089. Yang YL, Tang Y, Jiang HM, Chen YM, Wan PY, Fan MH, Zhang RR, Ullah S, Pan L, Zou JJ, Lao MM, Sun WP, Yang C, Zheng GF, Peng QL, Wang T, Luo YL, Sun XP, Konev AS, Levin OV, Lianos P, Hu ZF, Shen ZR, Zhao QL, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang HP, Zhang L, Sun SM, Wang WZ, Ma JM. 2020 roadmap on gas-involved photo- and electro-catalysis. Chin. Chem. Lett. 2019;30(12):2089.
[4]
Zurück zum Zitat Yang YL, Wu MG, Zhu XW, Xu H, Ma S, Zhi YF, Xia H, Liu XM, Pan J, Tang JY, Chai SP, Palmisano L, Parrino F, Liu JL, Ma JZ, Wang ZL, Tan L, Zhao YF, Song YF, Singh P, Raizada P, Jiang DL, Li D, Geioushy RA, Ma JZ, Zhang JT, Hu S, Feng RJ, Liu G, Liu MH, Li ZH, Shao MF, Li N, Peng JH, Ong WJ, Kornienko N, Xing ZY, Fan XJ, Ma JM. 2020 roadmap on two-dimensional nanomaterials for environmental catalysis. Chin. Chem. Lett. 2019;30(12):2065. Yang YL, Wu MG, Zhu XW, Xu H, Ma S, Zhi YF, Xia H, Liu XM, Pan J, Tang JY, Chai SP, Palmisano L, Parrino F, Liu JL, Ma JZ, Wang ZL, Tan L, Zhao YF, Song YF, Singh P, Raizada P, Jiang DL, Li D, Geioushy RA, Ma JZ, Zhang JT, Hu S, Feng RJ, Liu G, Liu MH, Li ZH, Shao MF, Li N, Peng JH, Ong WJ, Kornienko N, Xing ZY, Fan XJ, Ma JM. 2020 roadmap on two-dimensional nanomaterials for environmental catalysis. Chin. Chem. Lett. 2019;30(12):2065.
[5]
Zurück zum Zitat Wang QR, Guo JP, Chen P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 2019;36:25. Wang QR, Guo JP, Chen P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 2019;36:25.
[6]
Zurück zum Zitat Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrog. Energy. 2013;38(34):14576. Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrog. Energy. 2013;38(34):14576.
[7]
Zurück zum Zitat Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 2014;114(8):4041. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 2014;114(8):4041.
[8]
Zurück zum Zitat Cheng S, Gao YJ, Yan YL, Gao X, Zhang SH, Zhuang GL, Deng SW, Wei ZZ, Zhong X, Wang JG. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. J. Energy Chem. 2019;39:144. Cheng S, Gao YJ, Yan YL, Gao X, Zhang SH, Zhuang GL, Deng SW, Wei ZZ, Zhong X, Wang JG. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. J. Energy Chem. 2019;39:144.
[9]
Zurück zum Zitat Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013;257(17):2551. Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013;257(17):2551.
[10]
Zurück zum Zitat Anderson JS, Rittle J, Peters JC. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature. 2013;501(7465):84. Anderson JS, Rittle J, Peters JC. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature. 2013;501(7465):84.
[11]
Zurück zum Zitat MacLeod KC, Holland PL. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 2013;5(7):559. MacLeod KC, Holland PL. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 2013;5(7):559.
[12]
Zurück zum Zitat Schlögl R. Catalytic synthesis of ammonia—a “never-ending story”? Angew. Chem. Int. Ed. 2003;42(18):2004. Schlögl R. Catalytic synthesis of ammonia—a “never-ending story”? Angew. Chem. Int. Ed. 2003;42(18):2004.
[13]
Zurück zum Zitat Daisley A, Hargreaves JSJ. The role of interstitial species upon the ammonia synthesis activity of ternary Fe–Mo–C(N) and Ni–Mo–C(N) phases. J. Energy Chem. 2019;39:170. Daisley A, Hargreaves JSJ. The role of interstitial species upon the ammonia synthesis activity of ternary Fe–Mo–C(N) and Ni–Mo–C(N) phases. J. Energy Chem. 2019;39:170.
[14]
Zurück zum Zitat Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015;17(7):4909. Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015;17(7):4909.
[15]
Zurück zum Zitat Klerke A, Christensen CH, Nørskov JK, Vegge T. Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 2008;18(20):2304. Klerke A, Christensen CH, Nørskov JK, Vegge T. Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 2008;18(20):2304.
[16]
Zurück zum Zitat Rittle J, Peters JC. An Fe–N2 complex that generates hydrazine and ammonia via Fe–NNH2: demonstrating a hybrid distal-to-alternating pathway for N2 reduction. J. Am. Chem. Soc. 2016;138(12):4243. Rittle J, Peters JC. An Fe–N2 complex that generates hydrazine and ammonia via Fe–NNH2: demonstrating a hybrid distal-to-alternating pathway for N2 reduction. J. Am. Chem. Soc. 2016;138(12):4243.
[17]
Zurück zum Zitat Rodriguez MM, Bill E, Brennessel WW, Holland PL. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science. 2011;334(6057):780. Rodriguez MM, Bill E, Brennessel WW, Holland PL. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science. 2011;334(6057):780.
[18]
Zurück zum Zitat Wei ZX, Feng YZ, Ma JM. Co-doped graphene edge for enhanced N2-to-NH3 conversion. J. Energy Chem. 2020;48:322. Wei ZX, Feng YZ, Ma JM. Co-doped graphene edge for enhanced N2-to-NH3 conversion. J. Energy Chem. 2020;48:322.
[19]
Zurück zum Zitat Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012;14(3):1235. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012;14(3):1235.
[20]
Zurück zum Zitat Yang YL, Liu JD, Wei ZX, Wang SY, Ma JM. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction. ChemCatChem. 2019;11(12):2821. Yang YL, Liu JD, Wei ZX, Wang SY, Ma JM. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction. ChemCatChem. 2019;11(12):2821.
[21]
Zurück zum Zitat Ye KZZ, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 2020;132(12):4844. Ye KZZ, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 2020;132(12):4844.
[22]
Zurück zum Zitat Tanaka H, Nishibayashi Y, Yoshizawa K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016;49(5):987. Tanaka H, Nishibayashi Y, Yoshizawa K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016;49(5):987.
[23]
Zurück zum Zitat Fu QR, Meng Y, Fang ZL, Hu QQ, Xu L, Gao WH, Huang XC, Xue Q, Sun YP, Lu FS. Boron nitride nanosheet-anchored Pd–Fe core–shell nanoparticles as highly efficient catalysts for suzuki–miyaura coupling reactions. ACS Appl. Mater. Interfaces. 2017;9(3):2469. Fu QR, Meng Y, Fang ZL, Hu QQ, Xu L, Gao WH, Huang XC, Xue Q, Sun YP, Lu FS. Boron nitride nanosheet-anchored Pd–Fe core–shell nanoparticles as highly efficient catalysts for suzuki–miyaura coupling reactions. ACS Appl. Mater. Interfaces. 2017;9(3):2469.
[24]
Zurück zum Zitat Hu SZ, Chen X, Li Q, Li FY, Fan ZP, Wang H, Wang YG, Zheng BH, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis. Appl. Catal. B: Environ. 2017;201:58. Hu SZ, Chen X, Li Q, Li FY, Fan ZP, Wang H, Wang YG, Zheng BH, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis. Appl. Catal. B: Environ. 2017;201:58.
[25]
Zurück zum Zitat Li XF, Li QK, Cheng J, Liu L, Yan Q, Wu Y, Zhang XH, Wang ZY, Qiu Q, Luo Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016;138(28):8706. Li XF, Li QK, Cheng J, Liu L, Yan Q, Wu Y, Zhang XH, Wang ZY, Qiu Q, Luo Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016;138(28):8706.
[26]
Zurück zum Zitat Sun WL, Meng Y, Fu QR, Wang F, Wang GJ, Gao WH, Huang XC, Lu FS. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces. 2016;8(15):9881. Sun WL, Meng Y, Fu QR, Wang F, Wang GJ, Gao WH, Huang XC, Lu FS. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl. Mater. Interfaces. 2016;8(15):9881.
[27]
Zurück zum Zitat Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 2018;8(8):7517. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 2018;8(8):7517.
[28]
Zurück zum Zitat Kattel S, Wang G. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014;5(3):452. Kattel S, Wang G. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014;5(3):452.
[29]
Zurück zum Zitat Li QY, He LZ, Sun CH, Zhang XW. Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C. 2017;121(49):27563. Li QY, He LZ, Sun CH, Zhang XW. Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C. 2017;121(49):27563.
[30]
Zurück zum Zitat Mao X, Zhou S, Yan C, Zhu ZH, Du AJ. A single boron atom doped boron nitride edge as a metal-free catalyst for N2 fixation. Phys. Chem. Chem. Phys. 2019;21(3):1110. Mao X, Zhou S, Yan C, Zhu ZH, Du AJ. A single boron atom doped boron nitride edge as a metal-free catalyst for N2 fixation. Phys. Chem. Chem. Phys. 2019;21(3):1110.
[31]
Zurück zum Zitat Zhao JX, Chen ZF. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 2017;139(36):12480. Zhao JX, Chen ZF. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 2017;139(36):12480.
[32]
Zurück zum Zitat Zhao WR, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Enhanced nitrogen photofixation on Fe–doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal. B: Environ. 2014;144:468. Zhao WR, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Enhanced nitrogen photofixation on Fe–doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal. B: Environ. 2014;144:468.
[34]
Zurück zum Zitat Ou PF, Zhou X, Meng FC, Chen C, Chen YQ, Song J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale. 2019;11(28):13600. Ou PF, Zhou X, Meng FC, Chen C, Chen YQ, Song J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale. 2019;11(28):13600.
[35]
Zurück zum Zitat Shi L, Li Q, Ling CY, Zhang YH, Ouyang YX, Bai XW, Wang JL. Metal-free electrocatalyst for reducing nitrogen to ammonia using a lewis acid pair. J. Mater. Chem. A. 2019;7(9):4865. Shi L, Li Q, Ling CY, Zhang YH, Ouyang YX, Bai XW, Wang JL. Metal-free electrocatalyst for reducing nitrogen to ammonia using a lewis acid pair. J. Mater. Chem. A. 2019;7(9):4865.
[36]
Zurück zum Zitat Zhang LL, Ding LX, Chen GF, Yang XF, Wang HH. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 2019;58(9):2612. Zhang LL, Ding LX, Chen GF, Yang XF, Wang HH. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 2019;58(9):2612.
[37]
Zurück zum Zitat Cheng YW, Song Y, Zhang YM. The doping and oxidation of 2D black and blue phosphorene: a new photocatalyst for nitrogen reduction driven by visible light. Phys. Chem. Chem. Phys. 2019;21(44):24449. Cheng YW, Song Y, Zhang YM. The doping and oxidation of 2D black and blue phosphorene: a new photocatalyst for nitrogen reduction driven by visible light. Phys. Chem. Chem. Phys. 2019;21(44):24449.
[38]
Zurück zum Zitat Liu K, Fu JW, Zhu L, Zhang XD, Li HM, Liu H, Hu JH, Liu M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale. 2020;12(8):4903. Liu K, Fu JW, Zhu L, Zhang XD, Li HM, Liu H, Hu JH, Liu M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale. 2020;12(8):4903.
[39]
Zurück zum Zitat Wei ZX, Zhang YF, Wang SY, Wang CY, Ma JM. Fe–doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A. 2018;6(28):13790. Wei ZX, Zhang YF, Wang SY, Wang CY, Ma JM. Fe–doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A. 2018;6(28):13790.
[40]
Zurück zum Zitat Tang X, Wei ZX, Liu QH, Ma JM. Strain engineering the d-band center for Janus MoSSe edge: nitrogen fixation. J. Energy Chem. 2019;33:155. Tang X, Wei ZX, Liu QH, Ma JM. Strain engineering the d-band center for Janus MoSSe edge: nitrogen fixation. J. Energy Chem. 2019;33:155.
[41]
Zurück zum Zitat Kresse G, Furthmüller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996;6(1):15. Kresse G, Furthmüller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996;6(1):15.
[42]
Zurück zum Zitat Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47(1):558. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47(1):558.
[43]
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77(18):3865. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77(18):3865.
[44]
Zurück zum Zitat Liu CW, Li QY, Wu CZ, Zhang J, Jin YG, MacFarlane DR, Sun CH. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019;141(7):2884. Liu CW, Li QY, Wu CZ, Zhang J, Jin YG, MacFarlane DR, Sun CH. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019;141(7):2884.
[45]
Zurück zum Zitat Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem. 2015;8(13):2180. Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem. 2015;8(13):2180.
[46]
Zurück zum Zitat Zhu HR, Hu YL, Wei SH, Hua DY. Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study. J. Phys. Chem. C. 2019;123(7):4274. Zhu HR, Hu YL, Wei SH, Hua DY. Single-metal atom anchored on boron monolayer (β12) as an electrocatalyst for nitrogen reduction into ammonia at ambient conditions: a first-principles study. J. Phys. Chem. C. 2019;123(7):4274.
[47]
Zurück zum Zitat Zhao WH, Zhang LF, Luo QQ, Hu ZP, Zhang WH, Smith S, Yang JL. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019;9(4):3419. Zhao WH, Zhang LF, Luo QQ, Hu ZP, Zhang WH, Smith S, Yang JL. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019;9(4):3419.
Metadaten
Titel
Ru-doped phosphorene for electrochemical ammonia synthesis
verfasst von
Jian-Dong Liu
Zeng-Xi Wei
Yu-Hai Dou
Yue-Zhan Feng
Jian-Min Ma
Publikationsdatum
23.06.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01451-z

Weitere Artikel der Ausgabe 8/2020

Rare Metals 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.