Skip to main content
Erschienen in: Rare Metals 8/2021

06.02.2021 | Original Article

A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect

verfasst von: Bo-Hao Liu, Guang-Zhong Xie, Cheng-Zhen Li, Si Wang, Zhen Yuan, Zai-Hua Duan, Ya-Dong Jiang, Hui-Ling Tai

Erschienen in: Rare Metals | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, amido-graphene oxide (GO-NH2) loaded chitosan (CTS) composite material (CTS/GO-NH2) that acts as both the triboelectric and sensing film was prepared on rotary fan-shaped triboelectric nanogenerator for humidity detection. Compared with the pristine CTS-based triboelectric humidity sensor (CTS-THS) and GO-NH2-THS, the CTS/GO-NH2-based humidity sensor exhibited higher humidity response and better linearity in the relative humidity (RH) range of 18.7%RH–91.5%RH. The above results can be explained by the massive exposed and less concealed hydrophilic functional groups of CTS with the help of the wrinkle structure of GO-NH2. Meanwhile, the CTS/GO-NH2-THS possessed good repeatability and acceptable hysteresis (~ 6.2%RH). Finally, a humidity sensing mechanism coupling triboelectric contact charging effect with electrons transfer principle under moisture environment was established to interpret the enhanced humidity sensing performance of the composite film-based THS. This work demonstrates that CTS/GO-NH2 composite film can be utilized to fabricate humidity sensors based on the triboelectric effect.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X, Zhang J. MoS2 Van der Waals p-n junctions enabling highly selective room-temperature NO2 sensor. Adv Func Mater. 2020;30(19):2000435. Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X, Zhang J. MoS2 Van der Waals p-n junctions enabling highly selective room-temperature NO2 sensor. Adv Func Mater. 2020;30(19):2000435.
[2]
Zurück zum Zitat Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704. Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704.
[3]
Zurück zum Zitat Xu Y, Zheng W, Liu X, Zhang L, Zheng L, Yang C, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7(6):1519. Xu Y, Zheng W, Liu X, Zhang L, Zheng L, Yang C, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7(6):1519.
[4]
Zurück zum Zitat Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens Actuators B Chem. 2019;295:86. Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens Actuators B Chem. 2019;295:86.
[5]
Zurück zum Zitat Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.
[6]
Zurück zum Zitat Duan Z, Jiang Y, Wang S, Yuan Z, Zhao Q, Xie G, Du X, Tai H. Inspiration from daily goods: a low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn. ACS Sustain Chem Eng. 2019;7(20):17474. Duan Z, Jiang Y, Wang S, Yuan Z, Zhao Q, Xie G, Du X, Tai H. Inspiration from daily goods: a low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun yarn. ACS Sustain Chem Eng. 2019;7(20):17474.
[7]
Zurück zum Zitat Tai H, Duan Z, Wang Y, Wang S, Jiang Y. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl Mater Interfaces. 2020;12(28):31037. Tai H, Duan Z, Wang Y, Wang S, Jiang Y. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl Mater Interfaces. 2020;12(28):31037.
[8]
Zurück zum Zitat Liu B, Wang S, Yuan Z, Duan Z, Zhao Q, Zhang Y, Su Y, Jiang Y, Xie G, Tai H. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy. 2020;78:105256. Liu B, Wang S, Yuan Z, Duan Z, Zhao Q, Zhang Y, Su Y, Jiang Y, Xie G, Tai H. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy. 2020;78:105256.
[10]
Zurück zum Zitat Lee K, Yoo YK, Chae MS, Hwang KS, Lee J, Kim H, Hur D, Lee JH. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Sci Rep. 2019;9(1):1. Lee K, Yoo YK, Chae MS, Hwang KS, Lee J, Kim H, Hur D, Lee JH. Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Sci Rep. 2019;9(1):1.
[11]
Zurück zum Zitat Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2020;298:126874. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2020;298:126874.
[12]
Zurück zum Zitat Rasch F, Postica V, Schütt F, Mishra YK, Nia AS, Lohe MR, Feng X, Adelung R, Lupan O. Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens Actuators B Chem. 2020;320:128363. Rasch F, Postica V, Schütt F, Mishra YK, Nia AS, Lohe MR, Feng X, Adelung R, Lupan O. Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens Actuators B Chem. 2020;320:128363.
[13]
Zurück zum Zitat Tu HL, Zhao HB, Wei F, Zhang QZ, Fan YY, Du J. Research progress in advanced sensing materials and related devices. Chin J Rare Met. 2019;43(1):1. Tu HL, Zhao HB, Wei F, Zhang QZ, Fan YY, Du J. Research progress in advanced sensing materials and related devices. Chin J Rare Met. 2019;43(1):1.
[14]
Zurück zum Zitat Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2019;39(5):513. Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2019;39(5):513.
[16]
Zurück zum Zitat Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, Tang B. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv Mater. 2017;29(46):1703900. Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, Tang B. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv Mater. 2017;29(46):1703900.
[17]
Zurück zum Zitat Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuators B Chem. 2020;305:127534. Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuators B Chem. 2020;305:127534.
[18]
Zurück zum Zitat Duan Z, Jiang Y, Yan M, Wang S, Yuan Z, Zhao Q, Sun P, Xie G, Du X, Tai H. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl Mater Interfaces. 2019;11(24):21840. Duan Z, Jiang Y, Yan M, Wang S, Yuan Z, Zhao Q, Sun P, Xie G, Du X, Tai H. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl Mater Interfaces. 2019;11(24):21840.
[19]
Zurück zum Zitat Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104. Tai H, Wang S, Duan Z, Jiang Y. Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens Actuators B Chem. 2020;318:128104.
[20]
Zurück zum Zitat Blank TA, Eksperiandova LP, Belikov KN. Recent trends of ceramic humidity sensors development: a review. Sens Actuators B Chem. 2016;228:416. Blank TA, Eksperiandova LP, Belikov KN. Recent trends of ceramic humidity sensors development: a review. Sens Actuators B Chem. 2016;228:416.
[21]
Zurück zum Zitat Zeng FW, Liu XX, Diamond D, Lau KT. Humidity sensors based on polyaniline nanofibres. Sens Actuators B Chem. 2010;143(2):530. Zeng FW, Liu XX, Diamond D, Lau KT. Humidity sensors based on polyaniline nanofibres. Sens Actuators B Chem. 2010;143(2):530.
[22]
Zurück zum Zitat HarsaÂnyi G. Polymer films in sensor applications: a review of present uses and future possibilities. Sens Rev. 2000;20(2):98. HarsaÂnyi G. Polymer films in sensor applications: a review of present uses and future possibilities. Sens Rev. 2000;20(2):98.
[23]
Zurück zum Zitat Zou J, Zhang K, Zhang Q. Giant humidity response using a chitosan-based protonic conductive sensor. IEEE Sens J. 2016;16(24):8884. Zou J, Zhang K, Zhang Q. Giant humidity response using a chitosan-based protonic conductive sensor. IEEE Sens J. 2016;16(24):8884.
[24]
Zurück zum Zitat Qi P, Zhang T, Shao J, Yang B, Fei T, Wang R. A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens Actuators A Phys. 2019;287:93. Qi P, Zhang T, Shao J, Yang B, Fei T, Wang R. A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens Actuators A Phys. 2019;287:93.
[25]
Zurück zum Zitat Kim HS, Kim JH, Park SY, Kang JH, Kim SJ, Choi YB, Shin US. Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sens Actuators B Chem. 2019;300:127049. Kim HS, Kim JH, Park SY, Kang JH, Kim SJ, Choi YB, Shin US. Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sens Actuators B Chem. 2019;300:127049.
[26]
Zurück zum Zitat Dai H, Feng N, Li J, Zhang J, Li W. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens Actuators B Chem. 2019;283:786. Dai H, Feng N, Li J, Zhang J, Li W. Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens Actuators B Chem. 2019;283:786.
[27]
Zurück zum Zitat Liu Z, Duan X, Qian G, Zhou X, Yuan W. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nanotechnology. 2013;24(4):045609. Liu Z, Duan X, Qian G, Zhou X, Yuan W. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups. Nanotechnology. 2013;24(4):045609.
[28]
Zurück zum Zitat Zhu W, Wu C, Chang Y, Cheng H, Yu C. Solvent-free preparation of hydrophilic fluorinated graphene oxide modified with amino-groups. Mater Lett. 2019;237:1. Zhu W, Wu C, Chang Y, Cheng H, Yu C. Solvent-free preparation of hydrophilic fluorinated graphene oxide modified with amino-groups. Mater Lett. 2019;237:1.
[29]
Zurück zum Zitat Duan Z, Zhao Q, Wang S, Huang Q, Yuan Z, Zhang Y, Jiang Y, Tai H. Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens Actuators B Chem. 2020;317:128204. Duan Z, Zhao Q, Wang S, Huang Q, Yuan Z, Zhang Y, Jiang Y, Tai H. Halloysite nanotubes: natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens Actuators B Chem. 2020;317:128204.
[30]
Zurück zum Zitat Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-l-lysine modification. Sens Actuators B Chem. 2019;289:182. Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-l-lysine modification. Sens Actuators B Chem. 2019;289:182.
[31]
Zurück zum Zitat Wang S, Xie G, Su Y, Su L, Zhang Q, Du H, Tai H, Jiang Y. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens Actuators B Chem. 2018;255:2203. Wang S, Xie G, Su Y, Su L, Zhang Q, Du H, Tai H, Jiang Y. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens Actuators B Chem. 2018;255:2203.
[32]
Zurück zum Zitat Yuan Z, Tai H, Ye Z, Liu C, Xie G, Du X, Jiang Y. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sens Actuators B Chem. 2016;234:145. Yuan Z, Tai H, Ye Z, Liu C, Xie G, Du X, Jiang Y. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly (ethyleneimine) layered film. Sens Actuators B Chem. 2016;234:145.
[33]
Zurück zum Zitat Li Y, Deng C, Yang M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly (vinyl alcohol) with a capability of detecting low humidity. Sens Actuators B Chem. 2012;165(1):7. Li Y, Deng C, Yang M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly (vinyl alcohol) with a capability of detecting low humidity. Sens Actuators B Chem. 2012;165(1):7.
[34]
Zurück zum Zitat Harrey PM, Ramsey BJ, Evans PSA, Harrison DJ. Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sens Actuators B Chem. 2002;87(2):226. Harrey PM, Ramsey BJ, Evans PSA, Harrison DJ. Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sens Actuators B Chem. 2002;87(2):226.
[35]
Zurück zum Zitat Wang Z, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci. 2015;8(8):2250. Wang Z, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci. 2015;8(8):2250.
[36]
Zurück zum Zitat Garcia C, Trendafilova I, Villoria RG, Rio GS. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy. 2018;50:401. Garcia C, Trendafilova I, Villoria RG, Rio GS. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy. 2018;50:401.
[37]
Zurück zum Zitat Zou J, Zhang M, Huang J, Bian J, Jie Y, Willander M, Cao X, Wang N, Wang Z. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv Energy Mater. 2018;8(10):1702671. Zou J, Zhang M, Huang J, Bian J, Jie Y, Willander M, Cao X, Wang N, Wang Z. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv Energy Mater. 2018;8(10):1702671.
[38]
Zurück zum Zitat Yang Y, Zhu G, Zhang H, Chen J, Zhong X, Lin Z, Su Y, Bai P, Wen X, Wang Z. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano. 2013;7(10):9461. Yang Y, Zhu G, Zhang H, Chen J, Zhong X, Lin Z, Su Y, Bai P, Wen X, Wang Z. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano. 2013;7(10):9461.
[39]
Zurück zum Zitat Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang Z. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano. 2018;12(4):3954. Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang Z. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano. 2018;12(4):3954.
[40]
Zurück zum Zitat Wang S, Xie G, Tai H, Su Y, Yang B, Zhang Q, Du X, Jiang Y. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy. 2018;51:231. Wang S, Xie G, Tai H, Su Y, Yang B, Zhang Q, Du X, Jiang Y. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy. 2018;51:231.
[41]
Zurück zum Zitat Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Xie G, Du X, Su Y. An integrated flexible self-powered wearable respiration sensor. Nano Energy. 2019;63:103829. Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Xie G, Du X, Su Y. An integrated flexible self-powered wearable respiration sensor. Nano Energy. 2019;63:103829.
[42]
Zurück zum Zitat Wang S, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Su Y, Xie G, Du X, Jiang Y. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy. 2019;58:312. Wang S, Tai H, Liu B, Duan Z, Yuan Z, Pan H, Su Y, Xie G, Du X, Jiang Y. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy. 2019;58:312.
[43]
Zurück zum Zitat Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, Zhou Y, Zhang S, Tai H, Cai Z, Chen G, Jiang Y, Chen L, Chen J. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano. 2020;14(5):6067. Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, Zhou Y, Zhang S, Tai H, Cai Z, Chen G, Jiang Y, Chen L, Chen J. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano. 2020;14(5):6067.
[44]
Zurück zum Zitat Lin Z, Zhu G, Zhou Y, Yang Y, Bai P, Chen J, Wang Z. A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Edit. 2013;52:5065. Lin Z, Zhu G, Zhou Y, Yang Y, Bai P, Chen J, Wang Z. A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Edit. 2013;52:5065.
[45]
Zurück zum Zitat Su Y, Xie G, Wang S, Tai H, Zhang Q, Du H, Zhang H, Du X, Jiang Y. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens Actuators B Chem. 2017;251:144. Su Y, Xie G, Wang S, Tai H, Zhang Q, Du H, Zhang H, Du X, Jiang Y. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens Actuators B Chem. 2017;251:144.
[46]
Zurück zum Zitat Zhang D, Xu Z, Yang Z, Song X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy. 2020;67:104251. Zhang D, Xu Z, Yang Z, Song X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy. 2020;67:104251.
[47]
Zurück zum Zitat Xia K, Zhu Z, Fu J, Chi Y, Xu Z. Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Trans Electron Dev. 2019;66(6):2741. Xia K, Zhu Z, Fu J, Chi Y, Xu Z. Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Trans Electron Dev. 2019;66(6):2741.
[48]
Zurück zum Zitat Chang T, Peng Y, Chen C, Chang T, Wu J, Hwang J, Gan J, Lin Z. Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting. Nano Energy. 2016;21:238. Chang T, Peng Y, Chen C, Chang T, Wu J, Hwang J, Gan J, Lin Z. Protein-based contact electrification and its uses for mechanical energy harvesting and humidity detecting. Nano Energy. 2016;21:238.
[49]
Zurück zum Zitat Lin L, Wang S, Niu S, Liu C, Xie Y, Wang Z. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces. 2014;6(4):3031. Lin L, Wang S, Niu S, Liu C, Xie Y, Wang Z. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl Mater Interfaces. 2014;6(4):3031.
[50]
Zurück zum Zitat Li L, Deng J, Deng H, Liu Z, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994. Li L, Deng J, Deng H, Liu Z, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994.
[51]
Zurück zum Zitat Zhang F, Liu W, Wang S, Jiang C, Xie Y, Yang M, Shi H. A novel and feasible approach for polymer amine modified graphene oxide to improve water resistance, thermal, and mechanical ability of waterborne polyurethane. Appl Surf Sci. 2019;491:301. Zhang F, Liu W, Wang S, Jiang C, Xie Y, Yang M, Shi H. A novel and feasible approach for polymer amine modified graphene oxide to improve water resistance, thermal, and mechanical ability of waterborne polyurethane. Appl Surf Sci. 2019;491:301.
[52]
Zurück zum Zitat Reddy DHK, Lee SM. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci. 2013;201:68. Reddy DHK, Lee SM. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Colloid Interface Sci. 2013;201:68.
[53]
Zurück zum Zitat Dong Z, Du Y, Fan L, Wen Y, Liu H, Wang X. Preparation and properties of chitosan/gelatin/nano-TiO2 ternary composite films. J Funct Polym. 2004;17:61. Dong Z, Du Y, Fan L, Wen Y, Liu H, Wang X. Preparation and properties of chitosan/gelatin/nano-TiO2 ternary composite films. J Funct Polym. 2004;17:61.
[54]
Zurück zum Zitat He H, Fu Y, Zang W, Wang Q, Xing L, Zhang Y, Xue X. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy. 2017;31:37. He H, Fu Y, Zang W, Wang Q, Xing L, Zhang Y, Xue X. A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy. 2017;31:37.
[55]
Zurück zum Zitat Zhao T, Fu Y, Zhao Y, Xing L, Xue X. Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J Alloys Compd. 2015;648:571. Zhao T, Fu Y, Zhao Y, Xing L, Xue X. Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J Alloys Compd. 2015;648:571.
[56]
Zurück zum Zitat Zhu Y, Li Q, Wang P, Zang W, Xing L, Xue X. Enhanced piezo-humidity sensing of Sb-doped ZnO nanowire arrays as self-powered/active humidity sensor. Mater Lett. 2015;154:77. Zhu Y, Li Q, Wang P, Zang W, Xing L, Xue X. Enhanced piezo-humidity sensing of Sb-doped ZnO nanowire arrays as self-powered/active humidity sensor. Mater Lett. 2015;154:77.
[57]
Zurück zum Zitat Qian C, Li L, Gao M, Yang H, Cai Z, Chen B, Xiang Z, Zhang Z, Song Y. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy. 2019;63:103885. Qian C, Li L, Gao M, Yang H, Cai Z, Chen B, Xiang Z, Zhang Z, Song Y. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors. Nano Energy. 2019;63:103885.
[58]
Zurück zum Zitat Wang S, Xie Y, Niu S, Lin L, Wang Z. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater. 2014;26(18):2818. Wang S, Xie Y, Niu S, Lin L, Wang Z. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater. 2014;26(18):2818.
[59]
Zurück zum Zitat Zhang X, Han M, Wang R, Meng B, Zhu F, Sun X, Hu W, Wang W, Li Z, Zhang H. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy. 2014;4:123. Zhang X, Han M, Wang R, Meng B, Zhu F, Sun X, Hu W, Wang W, Li Z, Zhang H. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy. 2014;4:123.
[60]
Zurück zum Zitat Lacks DJ, Sankaran RM. Contact electrification of insulating materials. J Phys D Appl Phys. 2011;44(45):453001. Lacks DJ, Sankaran RM. Contact electrification of insulating materials. J Phys D Appl Phys. 2011;44(45):453001.
Metadaten
Titel
A chitosan/amido-graphene oxide-based self-powered humidity sensor enabled by triboelectric effect
verfasst von
Bo-Hao Liu
Guang-Zhong Xie
Cheng-Zhen Li
Si Wang
Zhen Yuan
Zai-Hua Duan
Ya-Dong Jiang
Hui-Ling Tai
Publikationsdatum
06.02.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01645-5

Weitere Artikel der Ausgabe 8/2021

Rare Metals 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.