Skip to main content
Erschienen in: Rare Metals 8/2022

19.05.2022 | Original Article

Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction

verfasst von: Hao Cui, Han-Xiao Liao, Zhi-Lu Wang, Jian-Ping Xie, Peng-Fei Tan, De-Wei Chu, Pan Jun

Erschienen in: Rare Metals | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The efficiency of electrochemical water splitting is extremely hampered by the sluggish oxygen evolution reaction (OER) occurred at the anode. Therefore, developing high-performance OER electrocatalysts is crucial for realizing the industrialized application of water splitting. Herein, a high-efficiency electrocatalyst of ruthenium-decorated nickel-iron hydroxide (10Ru-NiFe LDH) supported on Ni foam is successfully synthesized for OER. Modifying NiFe LDH with ruthenium can optimize the electronic density to form high valences of metal sites, which is beneficial to promote its OER performance. Consequently, the 10Ru-NiFe LDH only needs a low overpotential of 222 mV to achieve a current density of 50 mA·cm−2, which exhibits fast OER kinetics with a small Tafel slope of 58 mV·dec−1. Moreover, this electrocatalyst shows high stability over 20 h at a high current density of 100 mA·cm−2 without obvious decay. The decent OER performances can be ascribed to the increased active sites and the synergistic electronic interactions among Ni, Fe and Ru. This work provides an effective approach for designing desirable electrocatalysts for OER.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM. Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012;11(6):550.CrossRef Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM. Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater. 2012;11(6):550.CrossRef
[2]
Zurück zum Zitat Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373.CrossRef Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373.CrossRef
[3]
Zurück zum Zitat Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis. Science. 2017;358(6364):751.CrossRef Hwang J, Rao RR, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis. Science. 2017;358(6364):751.CrossRef
[4]
Zurück zum Zitat Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy. 2019;4(6):519.CrossRef Garcés-Pineda FA, Blasco-Ahicart M, Nieto-Castro D, López N, Galán-Mascarós JR. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat Energy. 2019;4(6):519.CrossRef
[5]
Zurück zum Zitat Wang HY, Weng CC, Ren JT, Yuan ZY. An overview and recent advances in electrocatalysts for direct seawater splitting. Front Chem Sci Eng. 2021;15(6):1408.CrossRef Wang HY, Weng CC, Ren JT, Yuan ZY. An overview and recent advances in electrocatalysts for direct seawater splitting. Front Chem Sci Eng. 2021;15(6):1408.CrossRef
[6]
Zurück zum Zitat Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406.CrossRef Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406.CrossRef
[7]
Zurück zum Zitat Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 2014;345(6204):1593.CrossRef Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 2014;345(6204):1593.CrossRef
[8]
Zurück zum Zitat Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan D. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun. 2020;11(1):2522.CrossRef Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan D. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun. 2020;11(1):2522.CrossRef
[9]
Zurück zum Zitat Cai C, Wang M, Han S, Wang Q, Zhang Q, Zhu Y, Yang X, Wu D, Zu X, Sterbinsky GE. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020;11(1):123.CrossRef Cai C, Wang M, Han S, Wang Q, Zhang Q, Zhu Y, Yang X, Wu D, Zu X, Sterbinsky GE. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020;11(1):123.CrossRef
[10]
Zurück zum Zitat Yu J, Li G, Liu H, Zeng L, Zhao L, Jia J, Zhang M, Zhou W, Liu H, Hu Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv Sci. 2019;6(18):1901458.CrossRef Yu J, Li G, Liu H, Zeng L, Zhao L, Jia J, Zhang M, Zhou W, Liu H, Hu Y. Electrochemical flocculation integrated hydrogen evolution reaction of Fe@N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv Sci. 2019;6(18):1901458.CrossRef
[11]
Zurück zum Zitat McCrory CCL, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135(45):16977.CrossRef McCrory CCL, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135(45):16977.CrossRef
[12]
Zurück zum Zitat Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today. 2016;262:170.CrossRef Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today. 2016;262:170.CrossRef
[13]
Zurück zum Zitat Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv Mater. 2019;31(8):1806312.CrossRef Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv Mater. 2019;31(8):1806312.CrossRef
[14]
Zurück zum Zitat Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IE, Chorkendorff I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci. 2015;6(1):190.CrossRef Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Stephens IE, Chorkendorff I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem Sci. 2015;6(1):190.CrossRef
[15]
Zurück zum Zitat Ren JT, Yao Y, Yuan ZY. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy Environ. 2021;6(5):620.CrossRef Ren JT, Yao Y, Yuan ZY. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy Environ. 2021;6(5):620.CrossRef
[16]
Zurück zum Zitat Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2021;40(1):125.CrossRef Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2021;40(1):125.CrossRef
[17]
Zurück zum Zitat Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv Funct Mater. 2021;31(38):2102772.CrossRef Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv Funct Mater. 2021;31(38):2102772.CrossRef
[18]
Zurück zum Zitat Liu K, Wang F, He P, Shifa TA, Wang Z, Cheng Z, Zhan X, He J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv Energy Mater. 2018;8(15):1703290.CrossRef Liu K, Wang F, He P, Shifa TA, Wang Z, Cheng Z, Zhan X, He J. The role of active oxide species for electrochemical water oxidation on the surface of 3d-metal phosphides. Adv Energy Mater. 2018;8(15):1703290.CrossRef
[19]
Zurück zum Zitat Chen C, Tao L, Du S, Chen W, Wang Y, Zou Y, Wang S. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv Funct Mater. 2020;30(14):1909832.CrossRef Chen C, Tao L, Du S, Chen W, Wang Y, Zou Y, Wang S. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv Funct Mater. 2020;30(14):1909832.CrossRef
[20]
Zurück zum Zitat Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ Sci. 2020;13(10):3439.CrossRef Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ Sci. 2020;13(10):3439.CrossRef
[21]
Zurück zum Zitat Tang Y, Liu Q, Dong L, Wu HB, Yu XY. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B: Environ. 2020;266:118627.CrossRef Tang Y, Liu Q, Dong L, Wu HB, Yu XY. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl Catal B: Environ. 2020;266:118627.CrossRef
[22]
Zurück zum Zitat Ren JT, Wang YS, Chen L, Gao LJ, Tian WW, Yuan ZY. Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem Eng J. 2020;389:124408.CrossRef Ren JT, Wang YS, Chen L, Gao LJ, Tian WW, Yuan ZY. Binary FeNi phosphides dispersed on N, P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem Eng J. 2020;389:124408.CrossRef
[23]
Zurück zum Zitat Zhang JW, Zhang H, Ren TZ, Yuan ZY, Bandosz TJ. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Front Chem Sci Eng. 2021;15(2):279.CrossRef Zhang JW, Zhang H, Ren TZ, Yuan ZY, Bandosz TJ. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Front Chem Sci Eng. 2021;15(2):279.CrossRef
[24]
Zurück zum Zitat Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;59(4):1718.CrossRef Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;59(4):1718.CrossRef
[25]
Zurück zum Zitat Zhang H, Wu X, Chen C, Lv C, Liu H, Lv Y, Guo J, Li J, Jia D, Tong F. Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chem Eng J. 2021;417:128069.CrossRef Zhang H, Wu X, Chen C, Lv C, Liu H, Lv Y, Guo J, Li J, Jia D, Tong F. Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chem Eng J. 2021;417:128069.CrossRef
[26]
Zurück zum Zitat Tian L, Li Z, Xu X, Zhang C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J Mater Chem A. 2021;9(23):13459.CrossRef Tian L, Li Z, Xu X, Zhang C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J Mater Chem A. 2021;9(23):13459.CrossRef
[27]
Zurück zum Zitat Sun H, Zhang W, Li JG, Li Z, Ao X, Xue KH, Ostrikov KK, Tang J, Wang C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B: Environ. 2021;284:119740.CrossRef Sun H, Zhang W, Li JG, Li Z, Ao X, Xue KH, Ostrikov KK, Tang J, Wang C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B: Environ. 2021;284:119740.CrossRef
[28]
Zurück zum Zitat Yu J, Guo Y, She S, Miao S, Ni M, Zhou W, Liu M, Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(39):1800047.CrossRef Yu J, Guo Y, She S, Miao S, Ni M, Zhou W, Liu M, Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(39):1800047.CrossRef
[29]
Zurück zum Zitat He J, Zhou X, Xu P, Sun J. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy. 2021;80:105540.CrossRef He J, Zhou X, Xu P, Sun J. Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy. 2021;80:105540.CrossRef
[30]
Zurück zum Zitat Niu S, Kong XP, Li S, Zhang Y, Wu J, Zhao W, Xu P. Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl Catal B: Environ. 2021;297:120442.CrossRef Niu S, Kong XP, Li S, Zhang Y, Wu J, Zhao W, Xu P. Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl Catal B: Environ. 2021;297:120442.CrossRef
[31]
Zurück zum Zitat Li Y, Abbott J, Sun Y, Sun J, Du Y, Han X, Wu G, Xu P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl Catal B: Environ. 2019;258:117952.CrossRef Li Y, Abbott J, Sun Y, Sun J, Du Y, Han X, Wu G, Xu P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl Catal B: Environ. 2019;258:117952.CrossRef
[32]
Zurück zum Zitat Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interf Sci. 2022;605:779.CrossRef Wang Y, Wang C, Shang H, Yuan M, Wu Z, Li J, Du Y. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J Colloid Interf Sci. 2022;605:779.CrossRef
[33]
Zurück zum Zitat Qu M, Jiang Y, Yang M, Liu S, Guo Q, Shen W, Li M, He R. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl Catal B: Environ. 2020;263:118234.CrossRef Qu M, Jiang Y, Yang M, Liu S, Guo Q, Shen W, Li M, He R. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl Catal B: Environ. 2020;263:118234.CrossRef
[34]
Zurück zum Zitat Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun. 2015;6(1):6616.CrossRef Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun. 2015;6(1):6616.CrossRef
[35]
Zurück zum Zitat Feng JX, Xu H, Dong YT, Ye SH, Tong YX, Li GR. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55(11):3694.CrossRef Feng JX, Xu H, Dong YT, Ye SH, Tong YX, Li GR. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55(11):3694.CrossRef
[36]
Zurück zum Zitat Zhao J, Zhang JJ, Li ZY, Bu XH. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small. 2020;16(51):2003916.CrossRef Zhao J, Zhang JJ, Li ZY, Bu XH. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small. 2020;16(51):2003916.CrossRef
[37]
Zurück zum Zitat Zhang G, Wang B, Bi J, Fang D, Yang S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(10):5769.CrossRef Zhang G, Wang B, Bi J, Fang D, Yang S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(10):5769.CrossRef
[38]
Zurück zum Zitat Wu Y, Tao X, Qing Y, Xu H, Yang F, Luo S, Tian C, Liu M, Lu X. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv Mater. 2019;31(15):1900178.CrossRef Wu Y, Tao X, Qing Y, Xu H, Yang F, Luo S, Tian C, Liu M, Lu X. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv Mater. 2019;31(15):1900178.CrossRef
[39]
Zurück zum Zitat Xue Q, Sun HY, Li YN, Zhong MJ, Li FM, Tian X, Chen P, Yin SB, Chen Y. Au@Ir core-shell nanowires towards oxygen reduction reaction. Chem Eng J. 2021;421:129760.CrossRef Xue Q, Sun HY, Li YN, Zhong MJ, Li FM, Tian X, Chen P, Yin SB, Chen Y. Au@Ir core-shell nanowires towards oxygen reduction reaction. Chem Eng J. 2021;421:129760.CrossRef
[40]
Zurück zum Zitat Duan Y, Yu ZY, Hu SJ, Zheng XS, Zhang CT, Ding HH, Hu BC, Fu QQ, Yu ZL, Zheng X. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed. 2019;58(44):15772.CrossRef Duan Y, Yu ZY, Hu SJ, Zheng XS, Zhang CT, Ding HH, Hu BC, Fu QQ, Yu ZL, Zheng X. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed. 2019;58(44):15772.CrossRef
[41]
Zurück zum Zitat Bo X, Hocking RK, Zhou S, Li Y, Chen X, Zhuang J, Du Y, Zhao C. Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction. Energy Environ Sci. 2020;13(11):4225.CrossRef Bo X, Hocking RK, Zhou S, Li Y, Chen X, Zhuang J, Du Y, Zhao C. Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction. Energy Environ Sci. 2020;13(11):4225.CrossRef
[42]
Zurück zum Zitat Rasouli H, Hosseini MG, Hosseini MM. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting. J Colloid Interf Sci. 2021;582:254.CrossRef Rasouli H, Hosseini MG, Hosseini MM. Ta2O5-incorporated in photoinduced electrocatalyst of TiO2-RuO2 decorated by PPy-NrGO nanocomposite for boosting overall water splitting. J Colloid Interf Sci. 2021;582:254.CrossRef
[43]
Zurück zum Zitat Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040.CrossRef Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040.CrossRef
[44]
Zurück zum Zitat Cai L, Qiu B, Lin Z, Wang Y, Ma S, Wang M, Tsang YH, Chai Y. Active site engineering of Fe-and Ni-sites for highly efficient electrochemical overall water splitting. J Mater Chem A. 2018;6(43):21445.CrossRef Cai L, Qiu B, Lin Z, Wang Y, Ma S, Wang M, Tsang YH, Chai Y. Active site engineering of Fe-and Ni-sites for highly efficient electrochemical overall water splitting. J Mater Chem A. 2018;6(43):21445.CrossRef
[45]
Zurück zum Zitat Dinh KN, Zheng P, Dai Z, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14(8):1703257.CrossRef Dinh KN, Zheng P, Dai Z, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small. 2018;14(8):1703257.CrossRef
[46]
Zurück zum Zitat Liu S, Wang X, Yu HG, Wu YP, Li B, Lan YQ, Wu T, Zhang J, Li DS. Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021;40(2):489.CrossRef Liu S, Wang X, Yu HG, Wu YP, Li B, Lan YQ, Wu T, Zhang J, Li DS. Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021;40(2):489.CrossRef
[47]
Zurück zum Zitat Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun. 2020;11(1):4173.CrossRef Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Fu J, Li H, Liu H, Lin Z, Li W, Li J, Lu YR, Chan TS, Zhang N, Liu M. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun. 2020;11(1):4173.CrossRef
[48]
Zurück zum Zitat Chen K, Cao M, Lin Y, Fu J, Liao H, Zhou Y, Li H, Qiu X, Hu J, Zheng X, Shakouri M, Xiao Q, Hu Y, Li J, Liu J, Cortés E, Liu M. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv Funct Mater. 2021;32(10):2111322.CrossRef Chen K, Cao M, Lin Y, Fu J, Liao H, Zhou Y, Li H, Qiu X, Hu J, Zheng X, Shakouri M, Xiao Q, Hu Y, Li J, Liu J, Cortés E, Liu M. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv Funct Mater. 2021;32(10):2111322.CrossRef
[49]
Zurück zum Zitat Chen G, Wang T, Zhang J, Liu P, Sun H, Zhuang X, Chen M, Feng X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater. 2018;30(10):1706279.CrossRef Chen G, Wang T, Zhang J, Liu P, Sun H, Zhuang X, Chen M, Feng X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater. 2018;30(10):1706279.CrossRef
[50]
Zurück zum Zitat Chen QQ, Hou CC, Wang CJ, Yang X, Shi R, Chen Y. Ir4+-doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chem Commun. 2018;54(49):6400.CrossRef Chen QQ, Hou CC, Wang CJ, Yang X, Shi R, Chen Y. Ir4+-doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chem Commun. 2018;54(49):6400.CrossRef
[51]
Zurück zum Zitat Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed. 2015;54(25):7399.CrossRef Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed. 2015;54(25):7399.CrossRef
[52]
Zurück zum Zitat Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts. ACS Energy Lett. 2018;3(7):1515.CrossRef Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe–OOH catalysts. ACS Energy Lett. 2018;3(7):1515.CrossRef
[53]
Zurück zum Zitat Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc. 2013;135(33):12329.CrossRef Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc. 2013;135(33):12329.CrossRef
[54]
Zurück zum Zitat Liu X, Meng J, Ni K, Guo R, Xia F, Xie J, Li X, Wen B, Wu P, Li M, Wu J, Wu X, Mai L, Zhao D. Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep Phys Sci. 2020;1(11):100241.CrossRef Liu X, Meng J, Ni K, Guo R, Xia F, Xie J, Li X, Wen B, Wu P, Li M, Wu J, Wu X, Mai L, Zhao D. Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep Phys Sci. 2020;1(11):100241.CrossRef
[55]
Zurück zum Zitat Görlin M, Ferreira de Araújo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J Am Chem Soc. 2017;139(5):2070.CrossRef Görlin M, Ferreira de Araújo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J Am Chem Soc. 2017;139(5):2070.CrossRef
[56]
Zurück zum Zitat Kuai C, Zhang Y, Wu D, Sokaras D, Mu L, Spence S, Nordlund D, Lin F, Du XW. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019;9(7):6027.CrossRef Kuai C, Zhang Y, Wu D, Sokaras D, Mu L, Spence S, Nordlund D, Lin F, Du XW. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019;9(7):6027.CrossRef
Metadaten
Titel
Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction
verfasst von
Hao Cui
Han-Xiao Liao
Zhi-Lu Wang
Jian-Ping Xie
Peng-Fei Tan
De-Wei Chu
Pan Jun
Publikationsdatum
19.05.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 8/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-022-02003-3

Weitere Artikel der Ausgabe 8/2022

Rare Metals 8/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.