Skip to main content
Erschienen in: Ambio 6/2012

01.09.2012

How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups

verfasst von: Jonathan N. Havenhand

Erschienen in: Ambio | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing partial pressure of atmospheric CO2 is causing ocean pH to fall—a process known as ‘ocean acidification’. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤3 times increase in acidity (reduction of 0.2–0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Calcite is a mineral form of CaCO3, the saturation state of which decreases with increasing ocean acidification.
 
Literatur
Zurück zum Zitat Andersson, A.J., F.T. Mackenzie, and A. Lerman. 2005. Coastal ocean and carbonate systems in the high CO(2) world of the anthropocene. American Journal of Science 305: 875–918.CrossRef Andersson, A.J., F.T. Mackenzie, and A. Lerman. 2005. Coastal ocean and carbonate systems in the high CO(2) world of the anthropocene. American Journal of Science 305: 875–918.CrossRef
Zurück zum Zitat Attrill, M.J., J. Wright, and M. Edwards. 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480–485.CrossRef Attrill, M.J., J. Wright, and M. Edwards. 2007. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnology and Oceanography 52: 480–485.CrossRef
Zurück zum Zitat Bechmann, R.K., I.C. Taban, S. Westerlund, B.F. Godal, M. Arnberg, S. Vingen, A. Ingvarsdottir, and T. Baussant. 2011. Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part a 74: 424–438.CrossRef Bechmann, R.K., I.C. Taban, S. Westerlund, B.F. Godal, M. Arnberg, S. Vingen, A. Ingvarsdottir, and T. Baussant. 2011. Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part a 74: 424–438.CrossRef
Zurück zum Zitat Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review 49: 1–42. Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review 49: 1–42.
Zurück zum Zitat Cao, L., K. Caldeira, and A.K. Jain. 2007. Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophysical Research Letters 34. doi:10.1029/2006GL028605. Cao, L., K. Caldeira, and A.K. Jain. 2007. Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophysical Research Letters 34. doi:10.​1029/​2006GL028605.
Zurück zum Zitat Cheung, W.W.L., J. Dunne, J.L. Sarmiento, and D. Pauly. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science 68: 1008–1018.CrossRef Cheung, W.W.L., J. Dunne, J.L. Sarmiento, and D. Pauly. 2011. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science 68: 1008–1018.CrossRef
Zurück zum Zitat Czerny, J., J.B.E. Ramos, and U. Riebesell. 2009. Influence of elevated CO(2) concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6: 1865–1875.CrossRef Czerny, J., J.B.E. Ramos, and U. Riebesell. 2009. Influence of elevated CO(2) concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6: 1865–1875.CrossRef
Zurück zum Zitat Doney, S.C., N. Mahowald, L. Lima, R.A. Feely, F.T. Mackenzie, J.F. Lamarque, and P.J. Rasch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America 104: 14580–14585.CrossRef Doney, S.C., N. Mahowald, L. Lima, R.A. Feely, F.T. Mackenzie, J.F. Lamarque, and P.J. Rasch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America 104: 14580–14585.CrossRef
Zurück zum Zitat Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1: 169–192.CrossRef Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1: 169–192.CrossRef
Zurück zum Zitat Doney, S., M. Ruckelshaus, E. Duffy, J. Barry, F. Chan, C. English, H. Galindo, J. Grebmeier, et al. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: 1–27.CrossRef Doney, S., M. Ruckelshaus, E. Duffy, J. Barry, F. Chan, C. English, H. Galindo, J. Grebmeier, et al. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: 1–27.CrossRef
Zurück zum Zitat Findlay, H.S., M.T. Burrows, M.A. Kendall, J.I. Spicer, and S. Widdicombe. 2010a. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91: 2931–2940.CrossRef Findlay, H.S., M.T. Burrows, M.A. Kendall, J.I. Spicer, and S. Widdicombe. 2010a. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91: 2931–2940.CrossRef
Zurück zum Zitat Findlay, H.S., M.A. Kendall, J.I. Spicer, and S. Widdicombe. 2010b. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuarine, Coastal and Shelf Science 86: 675–682.CrossRef Findlay, H.S., M.A. Kendall, J.I. Spicer, and S. Widdicombe. 2010b. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuarine, Coastal and Shelf Science 86: 675–682.CrossRef
Zurück zum Zitat Franke, A., and C. Clemmesen. 2011. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences Discussions 8: 7097–7126.CrossRef Franke, A., and C. Clemmesen. 2011. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences Discussions 8: 7097–7126.CrossRef
Zurück zum Zitat Frommel, A.Y., V. Stiebens, C. Clemmesen, and J. Havenhand. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7: 3915–3919.CrossRef Frommel, A.Y., V. Stiebens, C. Clemmesen, and J. Havenhand. 2010. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences 7: 3915–3919.CrossRef
Zurück zum Zitat Frommel, A.Y., R. Maneja, D. Lowe, A.M. Malzahn, A.J. Geffen, A. Folkvord, U. Piatkowski, and C. Clemmesen. 2012. Ocean acidification effects on larvae of a commercially important fish species, Atlantic cod (Gadhus morhua). Nature Climate Change 2: 42–46.CrossRef Frommel, A.Y., R. Maneja, D. Lowe, A.M. Malzahn, A.J. Geffen, A. Folkvord, U. Piatkowski, and C. Clemmesen. 2012. Ocean acidification effects on larvae of a commercially important fish species, Atlantic cod (Gadhus morhua). Nature Climate Change 2: 42–46.CrossRef
Zurück zum Zitat Fu, F.X., A.R. Place, N.S. Garcia, and D.A. Hutchins. 2010. CO(2) and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquatic Microbial Ecology 59: 55–65.CrossRef Fu, F.X., A.R. Place, N.S. Garcia, and D.A. Hutchins. 2010. CO(2) and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquatic Microbial Ecology 59: 55–65.CrossRef
Zurück zum Zitat Gaylord, B., T.M. Hill, E. Sanford, E.A. Lenz, L.A. Jacobs, K.N. Sato, A.D. Russell, and A. Hettinger. 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology 214: 2586–2594.CrossRef Gaylord, B., T.M. Hill, E. Sanford, E.A. Lenz, L.A. Jacobs, K.N. Sato, A.D. Russell, and A. Hettinger. 2011. Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology 214: 2586–2594.CrossRef
Zurück zum Zitat Gazeau, F., C. Quiblier, J.M. Jansen, J.P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34. doi:10.1029/2006GL028554. Gazeau, F., C. Quiblier, J.M. Jansen, J.P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34. doi:10.​1029/​2006GL028554.
Zurück zum Zitat Gazeau, F., J.P. Gattuso, C. Dawber, A.E. Pronker, F. Peene, J. Peene, C.H.R. Heip, and J.J. Middelburg. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7: 2051–2060.CrossRef Gazeau, F., J.P. Gattuso, C. Dawber, A.E. Pronker, F. Peene, J. Peene, C.H.R. Heip, and J.J. Middelburg. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7: 2051–2060.CrossRef
Zurück zum Zitat Giordano, M., J. Beardall, and J.A. Raven. 2005. CO(2) concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.CrossRef Giordano, M., J. Beardall, and J.A. Raven. 2005. CO(2) concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.CrossRef
Zurück zum Zitat Haddock, S.H.D. 2008. Reconsidering evidence for potential climate-related increases in jellyfish. Limnology and Oceanography 53: 2759–2762. Haddock, S.H.D. 2008. Reconsidering evidence for potential climate-related increases in jellyfish. Limnology and Oceanography 53: 2759–2762.
Zurück zum Zitat Harvey, C.J., S.P. Cox, T.E. Essington, S. Hansson, and J.F. Kitchell. 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES Journal of Marine Science 60: 939–950.CrossRef Harvey, C.J., S.P. Cox, T.E. Essington, S. Hansson, and J.F. Kitchell. 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES Journal of Marine Science 60: 939–950.CrossRef
Zurück zum Zitat Heikinheimo, O. 2011. Interactions between cod, herring and sprat in the changing environment of the Baltic Sea: A dynamic model analysis. Ecological Modelling 222: 1731–1742.CrossRef Heikinheimo, O. 2011. Interactions between cod, herring and sprat in the changing environment of the Baltic Sea: A dynamic model analysis. Ecological Modelling 222: 1731–1742.CrossRef
Zurück zum Zitat Hepburn, C.D., D.W. Pritchard, C.E. Cornwall, R.J. McLeod, J. Beardall, J.A. Raven, and C.L. Hurd. 2011. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO(2) ocean. Global Change Biology 17: 2488–2497.CrossRef Hepburn, C.D., D.W. Pritchard, C.E. Cornwall, R.J. McLeod, J. Beardall, J.A. Raven, and C.L. Hurd. 2011. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO(2) ocean. Global Change Biology 17: 2488–2497.CrossRef
Zurück zum Zitat Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, et al. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 6. doi:10.1371/journal.pone.0028983. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, et al. 2011. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 6. doi:10.​1371/​journal.​pone.​0028983.
Zurück zum Zitat Hopkinson, B.M., C.L. Dupont, A.E. Allen, and F.M.M. Morel. 2011. Efficiency of the CO(2)- of diatoms. Proceedings of the National Academy of Sciences of the United States of America 108: 3830–3837.CrossRef Hopkinson, B.M., C.L. Dupont, A.E. Allen, and F.M.M. Morel. 2011. Efficiency of the CO(2)- of diatoms. Proceedings of the National Academy of Sciences of the United States of America 108: 3830–3837.CrossRef
Zurück zum Zitat IPCC. 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge: CUP. IPCC. 2007. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge: CUP.
Zurück zum Zitat Karlberg, M., and A. Wulff. 2012. Climate change effects on filamentous cyanobacteria—two multifactorial case studies on ocean acidification, temperature and salinity. Marine Biology. Karlberg, M., and A. Wulff. 2012. Climate change effects on filamentous cyanobacteria—two multifactorial case studies on ocean acidification, temperature and salinity. Marine Biology.
Zurück zum Zitat Kordas, R.L., C.D.G. Harley, and M.I. O’Connor. 2011. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400: 218–226.CrossRef Kordas, R.L., C.D.G. Harley, and M.I. O’Connor. 2011. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400: 218–226.CrossRef
Zurück zum Zitat Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.CrossRef Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.CrossRef
Zurück zum Zitat Kurihara, H., and A. Ishimatsu. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56: 1086–1090.CrossRef Kurihara, H., and A. Ishimatsu. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56: 1086–1090.CrossRef
Zurück zum Zitat Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60: 743–750.CrossRef Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography 60: 743–750.CrossRef
Zurück zum Zitat Kurihara, H., T. Asai, S. Kato, and A. Ishimatsu. 2009. Effects of elevated pCO(2) on early development in the mussel Mytilus galloprovincialis. Aquatic Biology 4: 225–233.CrossRef Kurihara, H., T. Asai, S. Kato, and A. Ishimatsu. 2009. Effects of elevated pCO(2) on early development in the mussel Mytilus galloprovincialis. Aquatic Biology 4: 225–233.CrossRef
Zurück zum Zitat Mayor, D.J., C. Matthews, K. Cook, A.F. Zuur, and S. Hay. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology-Progress Series 350: 97.CrossRef Mayor, D.J., C. Matthews, K. Cook, A.F. Zuur, and S. Hay. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology-Progress Series 350: 97.CrossRef
Zurück zum Zitat Melzner, F., P. Stange, K. Trubenbach, J. Thomsen, L. Casties, U. Panknin, S.N. Gorb, and M.A. Gutowska. 2011. Food supply and seawater pCO(2) impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. Plos One 6. doi:10.1371/journal.pone.0024223. Melzner, F., P. Stange, K. Trubenbach, J. Thomsen, L. Casties, U. Panknin, S.N. Gorb, and M.A. Gutowska. 2011. Food supply and seawater pCO(2) impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. Plos One 6. doi:10.​1371/​journal.​pone.​0024223.
Zurück zum Zitat Melzner, F., S. Gobel, M. Langenbuch, M.A. Gutowska, H.O. Pörtner, and M. Lucassen. 2009a. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater P(CO2). Aquatic Toxicology 92: 30–37.CrossRef Melzner, F., S. Gobel, M. Langenbuch, M.A. Gutowska, H.O. Pörtner, and M. Lucassen. 2009a. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater P(CO2). Aquatic Toxicology 92: 30–37.CrossRef
Zurück zum Zitat Melzner, F., M.A. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen, M.C. Thorndyke, M. Bleich, and H.O. Pörtner. 2009b. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6: 2313–2331.CrossRef Melzner, F., M.A. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen, M.C. Thorndyke, M. Bleich, and H.O. Pörtner. 2009b. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6: 2313–2331.CrossRef
Zurück zum Zitat Niiranen, S., M.T. Tomczak, O. Hjerne, and T. Blenckner. 2012. Uncertainties in a Baltic Sea food-web model reveal challenges for future projections. AMBIO. doi:10.1007/s13280-012-0324-z. Niiranen, S., M.T. Tomczak, O. Hjerne, and T. Blenckner. 2012. Uncertainties in a Baltic Sea food-web model reveal challenges for future projections. AMBIO. doi:10.​1007/​s13280-012-0324-z.
Zurück zum Zitat Omstedt, A., E. Gustafsson, and K. Wesslander. 2009. Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Continental Shelf Research 29: 870–885.CrossRef Omstedt, A., E. Gustafsson, and K. Wesslander. 2009. Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water. Continental Shelf Research 29: 870–885.CrossRef
Zurück zum Zitat Omstedt, A., M. Edman, L.G. Anderson, and H. Laudon. 2010. Factors influencing the acid-base (pH) balance in the Baltic Sea: A sensitivity analysis. Tellus Series B-Chemical and Physical Meteorology 62: 280–295.CrossRef Omstedt, A., M. Edman, L.G. Anderson, and H. Laudon. 2010. Factors influencing the acid-base (pH) balance in the Baltic Sea: A sensitivity analysis. Tellus Series B-Chemical and Physical Meteorology 62: 280–295.CrossRef
Zurück zum Zitat Palacios, S.L., and R.C. Zimmerman. 2007. Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology-Progress Series 344: 1–13.CrossRef Palacios, S.L., and R.C. Zimmerman. 2007. Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology-Progress Series 344: 1–13.CrossRef
Zurück zum Zitat Ploug, H. 2008. Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnology and Oceanography 53: 914–921.CrossRef Ploug, H. 2008. Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnology and Oceanography 53: 914–921.CrossRef
Zurück zum Zitat Pörtner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology-Progress Series 373: 203–217.CrossRef Pörtner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology-Progress Series 373: 203–217.CrossRef
Zurück zum Zitat Pörtner, H.O., M. Langenbuch, and A. Reipschlager. 2004. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. Journal of Oceanography 60: 705–718.CrossRef Pörtner, H.O., M. Langenbuch, and A. Reipschlager. 2004. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. Journal of Oceanography 60: 705–718.CrossRef
Zurück zum Zitat Riebesell, U., K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhofer, C. Neill, G. Nondal, et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.CrossRef Riebesell, U., K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhofer, C. Neill, G. Nondal, et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450: 545–548.CrossRef
Zurück zum Zitat Sparholt, H. 1991. Multispecies assessment of Baltic fish stocks. Multispecies models relevant to management of living resources. ICES Marine Science Symposium 193: 64–79. Sparholt, H. 1991. Multispecies assessment of Baltic fish stocks. Multispecies models relevant to management of living resources. ICES Marine Science Symposium 193: 64–79.
Zurück zum Zitat Tedengren, M., and N. Kautsky. 1987. Comparative stress response to diesel oil and salinity changes of the blue mussel, Mytilus edulis from the Baltic and North seas. Ophelia 28: 1–9.CrossRef Tedengren, M., and N. Kautsky. 1987. Comparative stress response to diesel oil and salinity changes of the blue mussel, Mytilus edulis from the Baltic and North seas. Ophelia 28: 1–9.CrossRef
Zurück zum Zitat Thomsen, J., M.A. Gutowska, J. Saphorster, A. Heinemann, K. Trubenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, et al. 2010. Calcifying invertebrates succeed in a naturally CO(2)-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7: 3879–3891.CrossRef Thomsen, J., M.A. Gutowska, J. Saphorster, A. Heinemann, K. Trubenbach, J. Fietzke, C. Hiebenthal, A. Eisenhauer, et al. 2010. Calcifying invertebrates succeed in a naturally CO(2)-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7: 3879–3891.CrossRef
Zurück zum Zitat Tomczak, M.T., S. Niiranen, O. Hjerne, and T. Blenckner. 2012. Ecosystem flow dynamics in the Baltic Proper—using a multi-trophic dataset as a basis for food-web modelling. Ecological Modelling 230: 123–147.CrossRef Tomczak, M.T., S. Niiranen, O. Hjerne, and T. Blenckner. 2012. Ecosystem flow dynamics in the Baltic Proper—using a multi-trophic dataset as a basis for food-web modelling. Ecological Modelling 230: 123–147.CrossRef
Zurück zum Zitat Tyrrell, T., B. Schneider, A. Charalampopoulou, and U. Riebesell. 2008. Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5: 485–494.CrossRef Tyrrell, T., B. Schneider, A. Charalampopoulou, and U. Riebesell. 2008. Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences 5: 485–494.CrossRef
Zurück zum Zitat Walther, K., K. Anger, and H.O. Portner. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Marine Ecology-Progress Series 417: 159–170.CrossRef Walther, K., K. Anger, and H.O. Portner. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Marine Ecology-Progress Series 417: 159–170.CrossRef
Zurück zum Zitat Walther, K., F.J. Sartoris, and H. Portner. 2011. Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Marine Biology 158: 2043–2053.CrossRef Walther, K., F.J. Sartoris, and H. Portner. 2011. Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Marine Biology 158: 2043–2053.CrossRef
Zurück zum Zitat Westerbom, M., O. Mustonen, and M. Kilpi. 2008. Distribution of a marginal population of Mytilus edulis: Responses to biotic and abiotic processes at different spatial scales. Marine Biology 153: 1153–1164.CrossRef Westerbom, M., O. Mustonen, and M. Kilpi. 2008. Distribution of a marginal population of Mytilus edulis: Responses to biotic and abiotic processes at different spatial scales. Marine Biology 153: 1153–1164.CrossRef
Zurück zum Zitat Wootton, J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105: 18848–18853.CrossRef Wootton, J.T., C.A. Pfister, and J.D. Forester. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105: 18848–18853.CrossRef
Zurück zum Zitat Zimmerman, R.C., D.G. Kohrs, D.L. Steller, and R.S. Alberte. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiology 115: 599–607. Zimmerman, R.C., D.G. Kohrs, D.L. Steller, and R.S. Alberte. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiology 115: 599–607.
Metadaten
Titel
How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups
verfasst von
Jonathan N. Havenhand
Publikationsdatum
01.09.2012
Verlag
Springer Netherlands
Erschienen in
Ambio / Ausgabe 6/2012
Print ISSN: 0044-7447
Elektronische ISSN: 1654-7209
DOI
https://doi.org/10.1007/s13280-012-0326-x

Weitere Artikel der Ausgabe 6/2012

Ambio 6/2012 Zur Ausgabe