Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2022

19.10.2021 | Research Article-Computer Engineering and Computer Science

The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization

verfasst von: Farouq Zitouni, Saad Harous, Abdelghani Belkeram, Lokman Elhakim Baba Hammou

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Global optimization solves real-world problems numerically or analytically by minimizing their objective functions. Most of the analytical algorithms are greedy and computationally intractable (Gonzalez in Handbook of approximation algorithms and metaheuristics: contemporary and emerging applications, vol. 2. CRC Press, Boca Raton, 2018). Metaheuristics are generally nature-inspired optimization algorithms. They numerically find a near-optimal solution for optimization problems in a reasonable amount of time. We propose a novel metaheuristic algorithm for global optimization. It is based on the shooting and jumping behaviors of the archerfish for hunting aerial insects. We name our proposed algorithm the archerfish hunting optimizer (AHO). The AHO algorithm has two parameters (the swapping angle and the attractiveness rate) to set. We execute the AHO algorithm using five different values for each parameter. In all, we perform 25 simulations for four distinct values of the search space dimension (i.e., 5, 10, 15, and 20). We run the Friedman test to determine the best values of parameters for each dimension. We perform three different comparisons to validate the proposed algorithm’s performance. First, AHO is compared to 12 recent metaheuristic algorithms (the accepted algorithms for the 2020’s competition on single-objective bound-constrained numerical optimization) on ten test functions of the benchmark CEC 2020 for unconstrained optimization. The experimental results are evaluated using the Wilcoxon signed-rank test. Experimental outcomes show that the AHO algorithm, in terms of robustness, convergence, and quality of the obtained solution, is significantly competitive compared to state-of-the-art methods. Second, the performance of AHO and three recent metaheuristic algorithms is evaluated using five engineering design problems taken from the benchmark CEC 2020 for non-convex constrained optimization. The obtained results are ranked using the ranking scheme detailed in the corresponding paper, and the obtained ranks illustrate that AHO is very competitive when opposed to the considered algorithms. Finally, the performance of AHO in solving five engineering design problems is assessed and compared to several well-established state-of-the-art algorithms. We analyzed the obtained numerical results in detail. These results show that the AHO algorithm is significantly better than, or at least comparable to the considered algorithms with very efficient performance in solving many optimization problems. The statistical indicators illustrate that the AHO algorithm has a high ability to significantly outperform the well-established optimizers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbass, H.A.: Mbo: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 207–214. IEEE (2001) Abbass, H.A.: Mbo: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 207–214. IEEE (2001)
2.
Zurück zum Zitat Agarwal, P.K.; Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)MathSciNetMATH Agarwal, P.K.; Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)MathSciNetMATH
3.
Zurück zum Zitat Alatas, B.: Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011) Alatas, B.: Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)
4.
Zurück zum Zitat Artin, E.: The Gamma Function. Courier Dover Publications (2015) Artin, E.: The Gamma Function. Courier Dover Publications (2015)
5.
Zurück zum Zitat Askarzadeh, A.; Rezazadeh, A.: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204 (2013) Askarzadeh, A.; Rezazadeh, A.: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204 (2013)
6.
Zurück zum Zitat Atashpaz-Gargari, E.; Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, pp. 4661–4667. IEEE (2007) Atashpaz-Gargari, E.; Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, pp. 4661–4667. IEEE (2007)
7.
Zurück zum Zitat Becerra, R.L.; Coello, C.A.C.: Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195(33–36), 4303–4322 (2006)MathSciNetMATH Becerra, R.L.; Coello, C.A.C.: Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195(33–36), 4303–4322 (2006)MathSciNetMATH
8.
Zurück zum Zitat Beheshti, Z.; Shamsuddin, S.M.H.: A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 5(1), 1–35 (2013) Beheshti, Z.; Shamsuddin, S.M.H.: A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 5(1), 1–35 (2013)
9.
Zurück zum Zitat Bergmann, H.W.: Optimization: methods and applications, possibilities and limitations. In: Proceedings of an International Seminar Organized by Deutsche Forschungsanstalt Für Luft-und Raumfahrt (DLR), Bonn, June 1989, vol. 47. Springer Science & Business Media (2012) Bergmann, H.W.: Optimization: methods and applications, possibilities and limitations. In: Proceedings of an International Seminar Organized by Deutsche Forschungsanstalt Für Luft-und Raumfahrt (DLR), Bonn, June 1989, vol. 47. Springer Science & Business Media (2012)
10.
Zurück zum Zitat Biswas, P.P.; Suganthan, P.N.: Large initial population and neighborhood search incorporated in lshade to solve cec2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020) Biswas, P.P.; Suganthan, P.N.: Large initial population and neighborhood search incorporated in lshade to solve cec2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)
11.
Zurück zum Zitat Bolufé-Röhler, A.; Chen, S.: A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Bolufé-Röhler, A.; Chen, S.: A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
12.
Zurück zum Zitat BoussaïD, I.; Lepagnot, J.; Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetMATH BoussaïD, I.; Lepagnot, J.; Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetMATH
13.
Zurück zum Zitat Brest, J.; Maučec, M.S.; Bošković, B.: Differential evolution algorithm for single objective bound-constrained optimization: Algorithm j2020. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Brest, J.; Maučec, M.S.; Bošković, B.: Differential evolution algorithm for single objective bound-constrained optimization: Algorithm j2020. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
14.
Zurück zum Zitat Bujok, P.; Kolenovsky, P.; Janisch, V.: Eigenvector crossover in jde100 algorithm. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2020) Bujok, P.; Kolenovsky, P.; Janisch, V.: Eigenvector crossover in jde100 algorithm. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2020)
15.
Zurück zum Zitat Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetMATH Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetMATH
16.
Zurück zum Zitat Coello, C.A.C.; Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002) Coello, C.A.C.; Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002)
17.
Zurück zum Zitat Coello Coello, C.A.; Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 36(2), 219–236 (2004) Coello Coello, C.A.; Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 36(2), 219–236 (2004)
18.
Zurück zum Zitat Cramér, H.: Random Variables and Probability Distributions, vol. 36. Cambridge University Press, Cambridge (2004)MATH Cramér, H.: Random Variables and Probability Distributions, vol. 36. Cambridge University Press, Cambridge (2004)MATH
19.
Zurück zum Zitat Cuevas, E.; Fausto, F.; González, A.: The selfish herd optimizer. In: New Advancements in Swarm Algorithms: Operators and Applications, pp. 69–109. Springer (2020) Cuevas, E.; Fausto, F.; González, A.: The selfish herd optimizer. In: New Advancements in Swarm Algorithms: Operators and Applications, pp. 69–109. Springer (2020)
20.
Zurück zum Zitat Dai, C.; Chen, W.; Zhu, Y.; Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009) Dai, C.; Chen, W.; Zhu, Y.; Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)
21.
Zurück zum Zitat De Melo, V.V.; Carosio, G.L.: Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Syst. Appl. 40(9), 3370–3377 (2013) De Melo, V.V.; Carosio, G.L.: Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Syst. Appl. 40(9), 3370–3377 (2013)
22.
Zurück zum Zitat De Melo, V.V.; Iacca, G.: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization. Expert Syst. Appl. 41(16), 7077–7094 (2014) De Melo, V.V.; Iacca, G.: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization. Expert Syst. Appl. 41(16), 7077–7094 (2014)
23.
Zurück zum Zitat Dhiman, G.; Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019) Dhiman, G.; Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)
24.
Zurück zum Zitat Dill, L.M.: Refraction and the spitting behavior of the archerfish (toxotes chatareus). Behav. Ecol. Sociobiol. 2(2), 169–184 (1977) Dill, L.M.: Refraction and the spitting behavior of the archerfish (toxotes chatareus). Behav. Ecol. Sociobiol. 2(2), 169–184 (1977)
25.
Zurück zum Zitat Doğan, B.; Ölmez, T.: A new metaheuristic for numerical function optimization: vortex search algorithm. Inf. Sci. 293, 125–145 (2015) Doğan, B.; Ölmez, T.: A new metaheuristic for numerical function optimization: vortex search algorithm. Inf. Sci. 293, 125–145 (2015)
26.
Zurück zum Zitat Dorigo, M.; Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999) Dorigo, M.; Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)
27.
Zurück zum Zitat Dréo, J.; Pétrowski, A.; Siarry, P.; Taillard, E.: Metaheuristics for hard optimization: methods and case studies. Springer (2006) Dréo, J.; Pétrowski, A.; Siarry, P.; Taillard, E.: Metaheuristics for hard optimization: methods and case studies. Springer (2006)
28.
Zurück zum Zitat Du, H.; Wu, X.; Zhuang, J.: Small-world optimization algorithm for function optimization. In: International Conference on Natural Computation, pp. 264–273. Springer (2006) Du, H.; Wu, X.; Zhuang, J.: Small-world optimization algorithm for function optimization. In: International Conference on Natural Computation, pp. 264–273. Springer (2006)
29.
Zurück zum Zitat dos Santos Coelho, L.: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 37(2), 1676–1683 (2010) dos Santos Coelho, L.: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 37(2), 1676–1683 (2010)
30.
Zurück zum Zitat Eita, M.; Fahmy, M.: Group counseling optimization. Appl. Soft Comput. 22, 585–604 (2014) Eita, M.; Fahmy, M.: Group counseling optimization. Appl. Soft Comput. 22, 585–604 (2014)
31.
Zurück zum Zitat Erol, O.K.; Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006) Erol, O.K.; Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)
32.
Zurück zum Zitat Etemadi, N.: An elementary proof of the strong law of large numbers. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 55(1), 119–122 (1981)MathSciNetMATH Etemadi, N.: An elementary proof of the strong law of large numbers. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 55(1), 119–122 (1981)MathSciNetMATH
33.
Zurück zum Zitat Ezugwu, A.E.; Olusanya, M.O.; Govender, P.: Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood assignment in a blood bank system. Expert Syst. Appl. 137, 74–99 (2019) Ezugwu, A.E.; Olusanya, M.O.; Govender, P.: Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood assignment in a blood bank system. Expert Syst. Appl. 137, 74–99 (2019)
34.
Zurück zum Zitat Fan, Z.; Fang, Y.; Li, W.; Yuan, Y.; Wang, Z.; Bian, X.: Lshade44 with an improved \(\epsilon \) constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018) Fan, Z.; Fang, Y.; Li, W.; Yuan, Y.; Wang, Z.; Bian, X.: Lshade44 with an improved \(\epsilon \) constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)
35.
Zurück zum Zitat Fogel, D.B.: Artificial Intelligence Through Simulated Evolution. Wiley-IEEE Press, Hoboken (1998)MATH Fogel, D.B.: Artificial Intelligence Through Simulated Evolution. Wiley-IEEE Press, Hoboken (1998)MATH
36.
Zurück zum Zitat Fogel, D.B.: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press, Hoboken (1998)MATH Fogel, D.B.: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press, Hoboken (1998)MATH
37.
Zurück zum Zitat Fogel, L.J.; Owens, A.J.; Walsh, M.J.: Artificial intelligence through simulated evolution (1966) Fogel, L.J.; Owens, A.J.; Walsh, M.J.: Artificial intelligence through simulated evolution (1966)
38.
Zurück zum Zitat Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007) Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)
39.
Zurück zum Zitat Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014) Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014)
40.
Zurück zum Zitat Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)MathSciNetMATH Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)MathSciNetMATH
41.
Zurück zum Zitat Gavin, H.P.; Scruggs, J.T.: Constrained optimization using lagrange multipliers. CEE 201L. Duke University (2012) Gavin, H.P.; Scruggs, J.T.: Constrained optimization using lagrange multipliers. CEE 201L. Duke University (2012)
42.
Zurück zum Zitat Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001) Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
43.
Zurück zum Zitat Ghorbani, N.; Babaei, E.: Exchange market algorithm. Appl. Soft Comput. 19, 177–187 (2014) Ghorbani, N.; Babaei, E.: Exchange market algorithm. Appl. Soft Comput. 19, 177–187 (2014)
44.
Zurück zum Zitat Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetMATH Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetMATH
45.
Zurück zum Zitat Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990) Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)
46.
Zurück zum Zitat Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics: Contemporary and Emerging Applications, vol. 2. CRC Press, Boca Raton (2018)MATH Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics: Contemporary and Emerging Applications, vol. 2. CRC Press, Boca Raton (2018)MATH
47.
Zurück zum Zitat Grossman, T.; Wool, A.: Computational experience with approximation algorithms for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)MATH Grossman, T.; Wool, A.: Computational experience with approximation algorithms for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)MATH
48.
Zurück zum Zitat Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation, pp. 75–102. Springer (2006) Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation, pp. 75–102. Springer (2006)
49.
Zurück zum Zitat Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)MathSciNet Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)MathSciNet
50.
Zurück zum Zitat He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007) He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)
51.
Zurück zum Zitat He, Q.; Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186(2), 1407–1422 (2007)MathSciNetMATH He, Q.; Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186(2), 1407–1422 (2007)MathSciNetMATH
52.
Zurück zum Zitat He, S.; Wu, Q.; Saunders, J.: A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1272–1278. IEEE (2006) He, S.; Wu, Q.; Saunders, J.: A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1272–1278. IEEE (2006)
53.
Zurück zum Zitat Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019) Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)
54.
Zurück zum Zitat Hellwig, M.; Beyer, H.G.: A matrix adaptation evolution strategy for constrained real-parameter optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018) Hellwig, M.; Beyer, H.G.: A matrix adaptation evolution strategy for constrained real-parameter optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)
55.
Zurück zum Zitat Ho, Y.C.; Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 115(3), 549–570 (2002)MathSciNetMATH Ho, Y.C.; Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 115(3), 549–570 (2002)MathSciNetMATH
56.
Zurück zum Zitat Hochba, D.S.: Approximation algorithms for NP-hard problems. ACM SIGACT News 28(2), 40–52 (1997) Hochba, D.S.: Approximation algorithms for NP-hard problems. ACM SIGACT News 28(2), 40–52 (1997)
57.
Zurück zum Zitat Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992) Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
58.
Zurück zum Zitat Huang, F.Z.; Wang, L.; He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)MathSciNetMATH Huang, F.Z.; Wang, L.; He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)MathSciNetMATH
59.
Zurück zum Zitat Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R.: Common benchmark functions for metaheuristic evaluation: a review. JOIV Int. J. Inf. Vis. 1(4–2), 218–223 (2017) Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R.: Common benchmark functions for metaheuristic evaluation: a review. JOIV Int. J. Inf. Vis. 1(4–2), 218–223 (2017)
60.
Zurück zum Zitat Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31(11), 7665–7683 (2019) Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31(11), 7665–7683 (2019)
61.
Zurück zum Zitat James, J.; Li, V.O.: A social spider algorithm for global optimization. Appl. Soft Comput. 30, 614–627 (2015) James, J.; Li, V.O.: A social spider algorithm for global optimization. Appl. Soft Comput. 30, 614–627 (2015)
62.
Zurück zum Zitat Jou, Y.C.; Wang, S.Y.; Yeh, J.F.; Chiang, T.C.: Multi-population modified l-shade for single objective bound constrained optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Jou, Y.C.; Wang, S.Y.; Yeh, J.F.; Chiang, T.C.: Multi-population modified l-shade for single objective bound constrained optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
63.
Zurück zum Zitat Kadavy, T.; Pluhacek, M.; Viktorin, A.; Senkerik, R.: Soma-cl for competition on single objective bound constrained numerical optimization benchmark: a competition entry on single objective bound constrained numerical optimization at the genetic and evolutionary computation conference (GECCO) 2020. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 9–10 (2020) Kadavy, T.; Pluhacek, M.; Viktorin, A.; Senkerik, R.: Soma-cl for competition on single objective bound constrained numerical optimization benchmark: a competition entry on single objective bound constrained numerical optimization at the genetic and evolutionary computation conference (GECCO) 2020. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 9–10 (2020)
64.
Zurück zum Zitat Karaboga, D.; Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress, pp. 789–798. Springer (2007) Karaboga, D.; Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress, pp. 789–798. Springer (2007)
65.
Zurück zum Zitat Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetMATH Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetMATH
66.
Zurück zum Zitat Kashan, A.H.: League championship algorithm: a new algorithm for numerical function optimization. In: 2009 International Conference of Soft Computing and Pattern Recognition, pp. 43–48. IEEE (2009) Kashan, A.H.: League championship algorithm: a new algorithm for numerical function optimization. In: 2009 International Conference of Soft Computing and Pattern Recognition, pp. 43–48. IEEE (2009)
67.
Zurück zum Zitat Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020) Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)
68.
Zurück zum Zitat Kaveh, A.; Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013) Kaveh, A.; Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)
69.
Zurück zum Zitat Kaveh, A.; Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012) Kaveh, A.; Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)
70.
Zurück zum Zitat Kaveh, A.; Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014) Kaveh, A.; Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)
71.
Zurück zum Zitat Kaveh, A.; Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)MATH Kaveh, A.; Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)MATH
72.
Zurück zum Zitat Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995) Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
73.
Zurück zum Zitat Kennedy, J., et al.: Encyclopedia of machine learning. Particle Swarm Optimization pp. 760–766 (2010) Kennedy, J., et al.: Encyclopedia of machine learning. Particle Swarm Optimization pp. 760–766 (2010)
74.
Zurück zum Zitat Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetMATH Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetMATH
75.
Zurück zum Zitat Koza, J.R.; Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)MATH Koza, J.R.; Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)MATH
76.
Zurück zum Zitat Kumar, A.; Misra, R.K.; Singh, D.; Mishra, S.; Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019) Kumar, A.; Misra, R.K.; Singh, D.; Mishra, S.; Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019)
77.
Zurück zum Zitat Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm and Evolutionary Computation p. 100693 (2020) Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm and Evolutionary Computation p. 100693 (2020)
78.
Zurück zum Zitat Labbi, Y.; Attous, D.B.; Gabbar, H.A.; Mahdad, B.; Zidan, A.: A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016) Labbi, Y.; Attous, D.B.; Gabbar, H.A.; Mahdad, B.; Zidan, A.: A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016)
79.
Zurück zum Zitat Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. (2020) Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. (2020)
80.
Zurück zum Zitat Li, X.: A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China (2003) Li, X.: A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China (2003)
81.
Zurück zum Zitat Liu, H.; Cai, Z.; Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010) Liu, H.; Cai, Z.; Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)
82.
Zurück zum Zitat Lu, X.; Zhou, Y.: A novel global convergence algorithm: bee collecting pollen algorithm. In: International Conference on Intelligent Computing, pp. 518–525. Springer (2008) Lu, X.; Zhou, Y.: A novel global convergence algorithm: bee collecting pollen algorithm. In: International Conference on Intelligent Computing, pp. 518–525. Springer (2008)
83.
Zurück zum Zitat Lüling, K.: The archer fish. Sci. Am. 209(1), 100–109 (1963) Lüling, K.: The archer fish. Sci. Am. 209(1), 100–109 (1963)
84.
Zurück zum Zitat Mezura-Montes, E.; Coello, C.A.C.: Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence, pp. 652–662. Springer (2005) Mezura-Montes, E.; Coello, C.A.C.: Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence, pp. 652–662. Springer (2005)
85.
Zurück zum Zitat Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C.C.: Modified differential evolution for constrained optimization. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 25–32. IEEE (2006) Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C.C.: Modified differential evolution for constrained optimization. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 25–32. IEEE (2006)
86.
Zurück zum Zitat Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015) Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)
87.
Zurück zum Zitat Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015) Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
88.
Zurück zum Zitat Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)MathSciNet Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)MathSciNet
89.
Zurück zum Zitat Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016) Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)
90.
Zurück zum Zitat Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017) Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)
91.
Zurück zum Zitat Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016) Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
92.
Zurück zum Zitat Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016) Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)
93.
Zurück zum Zitat Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014) Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
94.
Zurück zum Zitat Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M.: Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214 (2012) Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M.: Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:​1208.​2214 (2012)
95.
Zurück zum Zitat Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern, 1–29 (2019) Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern, 1–29 (2019)
96.
Zurück zum Zitat Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H.: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H.: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
97.
Zurück zum Zitat Mohamed, A.W.; Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012) Mohamed, A.W.; Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012)
98.
Zurück zum Zitat Mohammadi, A.; Zahiri, S.H.: Iir model identification using a modified inclined planes system optimization algorithm. Artif. Intell. Rev. 48(2), 237–259 (2017) Mohammadi, A.; Zahiri, S.H.: Iir model identification using a modified inclined planes system optimization algorithm. Artif. Intell. Rev. 48(2), 237–259 (2017)
99.
Zurück zum Zitat Mohammadi-Esfahrood, S.; Mohammadi, A.; Zahiri, S.H.: A simplified and efficient version of inclined planes system optimization algorithm. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 504–509. IEEE Mohammadi-Esfahrood, S.; Mohammadi, A.; Zahiri, S.H.: A simplified and efficient version of inclined planes system optimization algorithm. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 504–509. IEEE
100.
Zurück zum Zitat Moosavian, N.; Roodsari, B.K.: Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24 (2014) Moosavian, N.; Roodsari, B.K.: Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24 (2014)
101.
Zurück zum Zitat Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evolut. Comput. p. 100671 (2020) Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evolut. Comput. p. 100671 (2020)
102.
Zurück zum Zitat Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826, 1989 (1989) Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826, 1989 (1989)
103.
Zurück zum Zitat Mozaffari, M.H.; Abdy, H.; Zahiri, S.H.: IPO: an inclined planes system optimization algorithm. Comput. Inf. 35(1), 222–240 (2016)MathSciNetMATH Mozaffari, M.H.; Abdy, H.; Zahiri, S.H.: IPO: an inclined planes system optimization algorithm. Comput. Inf. 35(1), 222–240 (2016)MathSciNetMATH
104.
Zurück zum Zitat Mucherino, A.; Seref, O.: Monkey search: a novel metaheuristic search for global optimization. In: AIP Conference Proceedings, vol. 953, pp. 162–173. AIP (2007) Mucherino, A.; Seref, O.: Monkey search: a novel metaheuristic search for global optimization. In: AIP Conference Proceedings, vol. 953, pp. 162–173. AIP (2007)
105.
Zurück zum Zitat Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)MATH Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)MATH
106.
Zurück zum Zitat Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012) Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012)
107.
Zurück zum Zitat Parsopoulos, K.E.; Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: International Conference on Natural Computation. Springer, pp. 582–591 (2005) Parsopoulos, K.E.; Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: International Conference on Natural Computation. Springer, pp. 582–591 (2005)
108.
Zurück zum Zitat Ramezani, F.; Lotfi, S.: Social-based algorithm (SBA). Appl. Soft Comput. 13(5), 2837–2856 (2013) Ramezani, F.; Lotfi, S.: Social-based algorithm (SBA). Appl. Soft Comput. 13(5), 2837–2856 (2013)
109.
Zurück zum Zitat Rao, R.V.; Savsani, V.J.; Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011) Rao, R.V.; Savsani, V.J.; Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)
110.
Zurück zum Zitat Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)MATH Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)MATH
111.
Zurück zum Zitat Ray, T.; Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 386–396 (2003) Ray, T.; Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 386–396 (2003)
112.
Zurück zum Zitat Rey, D.; Neuhäuser, M.: Wilcoxon-signed-rank test. In: International Encyclopedia of Statistical Science, pp. 1658–1659. Springer, Berlin (2011) Rey, D.; Neuhäuser, M.: Wilcoxon-signed-rank test. In: International Encyclopedia of Statistical Science, pp. 1658–1659. Springer, Berlin (2011)
113.
Zurück zum Zitat Rossel, S.; Corlija, J.; Schuster, S.: Predicting three-dimensional target motion: how archer fish determine where to catch their dislodged prey. J. Exp. Biol. 205(21), 3321–3326 (2002) Rossel, S.; Corlija, J.; Schuster, S.: Predicting three-dimensional target motion: how archer fish determine where to catch their dislodged prey. J. Exp. Biol. 205(21), 3321–3326 (2002)
114.
Zurück zum Zitat Roth, M.: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks (2005) Roth, M.: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks (2005)
115.
Zurück zum Zitat Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013) Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)
116.
Zurück zum Zitat Salgotra, R.; Singh, U.; Saha, S.; Gandomi, A.H.: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020) Salgotra, R.; Singh, U.; Saha, S.; Gandomi, A.H.: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)
117.
Zurück zum Zitat Salih, S.Q.; Alsewari, A.A.: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer. Neural Comput. Appl. 32(14), 10359–10386 (2020) Salih, S.Q.; Alsewari, A.A.: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer. Neural Comput. Appl. 32(14), 10359–10386 (2020)
118.
Zurück zum Zitat Sallam, K.M.; Elsayed, S.M.; Chakrabortty, R.K.; Ryan, M.J.: Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Sallam, K.M.; Elsayed, S.M.; Chakrabortty, R.K.; Ryan, M.J.: Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
119.
Zurück zum Zitat Salleh, M.N.M.; Hussain, K.; Cheng, S.; Shi, Y.; Muhammad, A.; Ullah, G.; Naseem, R.: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis. In: International Conference on Soft Computing and Data Mining, pp. 24–32. Springer (2018) Salleh, M.N.M.; Hussain, K.; Cheng, S.; Shi, Y.; Muhammad, A.; Ullah, G.; Naseem, R.: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis. In: International Conference on Soft Computing and Data Mining, pp. 24–32. Springer (2018)
120.
Zurück zum Zitat Saremi, S.; Mirjalili, S.; Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017) Saremi, S.; Mirjalili, S.; Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)
121.
Zurück zum Zitat Schuster, S.; Rossel, S.; Schmidtmann, A.; Jäger, I.; Poralla, J.: Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr. Biol. 14(17), 1565–1568 (2004) Schuster, S.; Rossel, S.; Schmidtmann, A.; Jäger, I.; Poralla, J.: Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr. Biol. 14(17), 1565–1568 (2004)
122.
Zurück zum Zitat Schuster, S.; Wöhl, S.; Griebsch, M.; Klostermeier, I.: Animal cognition: how archer fish learn to down rapidly moving targets. Curr. Biol. 16(4), 378–383 (2006) Schuster, S.; Wöhl, S.; Griebsch, M.; Klostermeier, I.: Animal cognition: how archer fish learn to down rapidly moving targets. Curr. Biol. 16(4), 378–383 (2006)
123.
Zurück zum Zitat Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011) Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011)
124.
Zurück zum Zitat Shih, A.M.; Mendelson, L.; Techet, A.H.: Archer fish jumping prey capture: kinematics and hydrodynamics. J. Exp. Biol. 220(8), 1411–1422 (2017) Shih, A.M.; Mendelson, L.; Techet, A.H.: Archer fish jumping prey capture: kinematics and hydrodynamics. J. Exp. Biol. 220(8), 1411–1422 (2017)
125.
Zurück zum Zitat Shiqin, Y.; Jianjun, J.; Guangxing, Y.: A dolphin partner optimization. In: 2009 WRI Global Congress on Intelligent Systems, vol. 1, pp. 124–128. IEEE (2009) Shiqin, Y.; Jianjun, J.; Guangxing, Y.: A dolphin partner optimization. In: 2009 WRI Global Congress on Intelligent Systems, vol. 1, pp. 124–128. IEEE (2009)
126.
Zurück zum Zitat Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008) Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
127.
Zurück zum Zitat Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S.: Dimension decided Harris Hawks optimization with gaussian mutation: balance analysis and diversity patterns. Knowl. Based Syst. 215, 106425 (2021) Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S.: Dimension decided Harris Hawks optimization with gaussian mutation: balance analysis and diversity patterns. Knowl. Based Syst. 215, 106425 (2021)
128.
Zurück zum Zitat Stanovov, V., Akhmedova, S., Semenkin, E.: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020) Stanovov, V., Akhmedova, S., Semenkin, E.: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)
129.
Zurück zum Zitat Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetMATH Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetMATH
131.
Zurück zum Zitat Talbi, H.; Draa, A.: A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl. Soft Comput. 61, 765–791 (2017) Talbi, H.; Draa, A.: A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl. Soft Comput. 61, 765–791 (2017)
132.
Zurück zum Zitat Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: International Conference in Swarm Intelligence, pp. 355–364. Springer (2010) Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: International Conference in Swarm Intelligence, pp. 355–364. Springer (2010)
133.
Zurück zum Zitat Tilahun, S.L.; Ong, H.C.: Prey-predator algorithm: a new metaheuristic algorithm for optimization problems. Int. J. Inf. Technol. Decis. Mak. 14(06), 1331–1352 (2015) Tilahun, S.L.; Ong, H.C.: Prey-predator algorithm: a new metaheuristic algorithm for optimization problems. Int. J. Inf. Technol. Decis. Mak. 14(06), 1331–1352 (2015)
134.
Zurück zum Zitat Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)MathSciNetMATH Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)MathSciNetMATH
135.
Zurück zum Zitat Trivedi, A.; Srinivasan, D.; Biswas, N.: An improved unified differential evolution algorithm for constrained optimization problems. In: Proceedings of 2018 IEEE Congress on Evolutionary Computation, pp. 1–10. IEEE (2018) Trivedi, A.; Srinivasan, D.; Biswas, N.: An improved unified differential evolution algorithm for constrained optimization problems. In: Proceedings of 2018 IEEE Congress on Evolutionary Computation, pp. 1–10. IEEE (2018)
136.
Zurück zum Zitat Vailati, A.; Zinnato, L.; Cerbino, R.: How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in toxotes jaculatrix. PLoS ONE 7(10), e47867 (2012) Vailati, A.; Zinnato, L.; Cerbino, R.: How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in toxotes jaculatrix. PLoS ONE 7(10), e47867 (2012)
137.
Zurück zum Zitat Van Laarhoven, P.J.; Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer (1987) Van Laarhoven, P.J.; Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer (1987)
138.
Zurück zum Zitat Vazirani, V.V.: Approximation Algorithms. Springer (2013) Vazirani, V.V.: Approximation Algorithms. Springer (2013)
139.
Zurück zum Zitat Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A.: Dish-xx solving CEC2020 single objective bound constrained numerical optimization benchmark. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020) Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A.: Dish-xx solving CEC2020 single objective bound constrained numerical optimization benchmark. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
140.
Zurück zum Zitat Wang, G.G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10(2), 151–164 (2018) Wang, G.G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10(2), 151–164 (2018)
141.
Zurück zum Zitat Wang, G.G.; Deb, S.; Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5. IEEE (2015) Wang, G.G.; Deb, S.; Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5. IEEE (2015)
142.
Zurück zum Zitat Wang, G.G.; Deb, S.; Coelho, L.D.S.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspired Comput. 12(1), 1–22 (2018) Wang, G.G.; Deb, S.; Coelho, L.D.S.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspired Comput. 12(1), 1–22 (2018)
143.
Zurück zum Zitat Wang, G.G.; Deb, S.; Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019) Wang, G.G.; Deb, S.; Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019)
144.
Zurück zum Zitat Wang, L.; Li, L.P.: An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 41(6), 947–963 (2010) Wang, L.; Li, L.P.: An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 41(6), 947–963 (2010)
145.
Zurück zum Zitat Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37(4), 395–413 (2009) Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37(4), 395–413 (2009)
146.
Zurück zum Zitat Webster, B.; Philip, J.; Bernhard, A.: Local search optimization algorithm based on natural principles of gravitation, IKE’03, Las Vegas, Nevada, USA, June 2003 (2003) Webster, B.; Philip, J.; Bernhard, A.: Local search optimization algorithm based on natural principles of gravitation, IKE’03, Las Vegas, Nevada, USA, June 2003 (2003)
147.
Zurück zum Zitat Wheelon, A.D.: Free flight of a ballistic missile. ARS J. 29(12), 915–926 (1959) Wheelon, A.D.: Free flight of a ballistic missile. ARS J. 29(12), 915–926 (1959)
148.
Zurück zum Zitat Xu, J.; Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In: Proceedings of the 33rd Chinese Control Conference, pp. 8633–8638. IEEE (2014) Xu, J.; Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In: Proceedings of the 33rd Chinese Control Conference, pp. 8633–8638. IEEE (2014)
149.
Zurück zum Zitat Yang, X.S.: Firefly algorithm, levy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer (2010) Yang, X.S.: Firefly algorithm, levy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer (2010)
150.
Zurück zum Zitat Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010) Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)
151.
Zurück zum Zitat Yang, X.S.; Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009) Yang, X.S.; Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)
152.
Zurück zum Zitat Yang, X.S.; Deb, S.; Fong, S.: Metaheuristic algorithms: optimal balance of intensification and diversification. Appl. Math. Inf. Sci. 8(3), 977 (2014) Yang, X.S.; Deb, S.; Fong, S.: Metaheuristic algorithms: optimal balance of intensification and diversification. Appl. Math. Inf. Sci. 8(3), 977 (2014)
153.
Zurück zum Zitat Yue, C.; Price, K.; Suganthan, P.; Liang, J.; Ali, M.; Qu, B.; Awad, N.; Biswas, P.: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Comput. Intell. Lab., Zhengzhou Univ., Zhengzhou, China, Tech. Rep 201911 (2019) Yue, C.; Price, K.; Suganthan, P.; Liang, J.; Ali, M.; Qu, B.; Awad, N.; Biswas, P.: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Comput. Intell. Lab., Zhengzhou Univ., Zhengzhou, China, Tech. Rep 201911 (2019)
154.
Zurück zum Zitat Zahara, E.; Kao, Y.T.: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009) Zahara, E.; Kao, Y.T.: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009)
155.
Zurück zum Zitat Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008) Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008)
156.
Zurück zum Zitat Zimmerman, D.W.; Zumbo, B.D.: Relative power of the wilcoxon test, the friedman test, and repeated-measures Anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993) Zimmerman, D.W.; Zumbo, B.D.: Relative power of the wilcoxon test, the friedman test, and repeated-measures Anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993)
Metadaten
Titel
The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization
verfasst von
Farouq Zitouni
Saad Harous
Abdelghani Belkeram
Lokman Elhakim Baba Hammou
Publikationsdatum
19.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2022
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06208-z

Weitere Artikel der Ausgabe 2/2022

Arabian Journal for Science and Engineering 2/2022 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

Automated Query Relaxation Mechanism for QoS-Aware Service Provisioning

Research Article-Computer Engineering and Computer Science

High Occupancy Itemset Mining with Consideration of Transaction Occupancy

Research Article-Computer Engineering and Computer Science

Thermal Comfort Model for HVAC Buildings Using Machine Learning

Research Article-Computer Engineering And Computer Science

Intelligent Framework for Prediction of Heart Disease using Deep Learning

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.