Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 7/2023

15.05.2021 | Original Article

Biodiesel production from new algal sources using response surface methodology and microwave application

verfasst von: Maria Hasnain, Zainul Abideen, Shagufta Naz, Ute Roessner, Neelma Munir

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Society is looking for clean alternate fuels due to the increased depletion of fossil fuels and energy demands. The cost of oil extraction and downstream biodiesel conversation processes are the main limiting factor to commercialized algal biodiesel. The effect of microwave irradiation on the simultaneous in situ transesterification and extraction of algae lipids was investigated for biodiesel production. The response surface methodology (RSM) with the central composite design was used to analyze catalyst concentration and reaction time. Oedogonium sp., Ulothrix sp., Cladophora sp., and Spirogyra sp. were collected and treated with microwave techniques with different optimized conditions by RSM. Results indicated that microwave technique enhanced biodiesel production in 73%, 88%, 80%, and 67% from Oedogonium sp., Ulothrix sp., Cladophora sp., and Spirogyra sp. dry weight (DW), respectively, with 1 wt.% catalyst concentration (potassium hydroxide) and 3 min with constant methanol concentration. Catalyst concentrations of up to 0.5 wt.% showed a positive effect on the transesterification reaction. The reaction time has a significant effect on biodiesel production. Under microwave irradiation, 3–6-min reaction time seems suitable for the complete in situ transesterification reaction. Microwave heating transesterification has been shown to be more effective for adequate biodiesel yield compared to the conventional transesterification process. This study suggested that Ulothrix sp. qualify as the most efficient feedstock for biodiesel production and that microwave-assisted in situ transesterification eliminates the need for high quantity of solvents, longer reaction times, and high reaction temperatures and pressures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Munir N, Abideen Z, Sharif N (2020) Development of halophytes as energy feedstock by applying genetic manipulations. All Life 13:1–10CrossRef Munir N, Abideen Z, Sharif N (2020) Development of halophytes as energy feedstock by applying genetic manipulations. All Life 13:1–10CrossRef
3.
Zurück zum Zitat Abideen Z, Hameed A, Koyro H-W, Gul B, Ansari R, Khan MA (2014) Sustainable biofuel production from non-food sources—an overview. Emir. J Food Agric 26:1057–1066 Abideen Z, Hameed A, Koyro H-W, Gul B, Ansari R, Khan MA (2014) Sustainable biofuel production from non-food sources—an overview. Emir. J Food Agric 26:1057–1066
5.
Zurück zum Zitat Glasenapp S, Fonseca M, Weimar H, Döring P, Aguilar FX (2020) Conversion factors for residential wood energy in the European Union: an introduction to harmonizing units of measurement. Renew Sust Energ Rev 138(C):110491 Glasenapp S, Fonseca M, Weimar H, Döring P, Aguilar FX (2020) Conversion factors for residential wood energy in the European Union: an introduction to harmonizing units of measurement. Renew Sust Energ Rev 138(C):110491
6.
Zurück zum Zitat Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: current status and key challenges. Energies. 12:1920CrossRef Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: current status and key challenges. Energies. 12:1920CrossRef
7.
Zurück zum Zitat Lajdová Z, Kapusta J, Bielik P (2017) Assessing interdependencies between food and energy prices: the case of biodiesel in Germany. AGRIS On-Line Pap Econ Inform 9:51–59CrossRef Lajdová Z, Kapusta J, Bielik P (2017) Assessing interdependencies between food and energy prices: the case of biodiesel in Germany. AGRIS On-Line Pap Econ Inform 9:51–59CrossRef
8.
Zurück zum Zitat Baudry G, Macharis C, Vallée T (2018) Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based multi-actor multi-criteria analysis. Energy. 155:1032–1046CrossRef Baudry G, Macharis C, Vallée T (2018) Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-based multi-actor multi-criteria analysis. Energy. 155:1032–1046CrossRef
9.
Zurück zum Zitat Basili M, Rossi MA (2018) Brassica carinata-derived biodiesel production: economics, sustainability and policies. The Italian case. J Clean Prod 191:40–47CrossRef Basili M, Rossi MA (2018) Brassica carinata-derived biodiesel production: economics, sustainability and policies. The Italian case. J Clean Prod 191:40–47CrossRef
10.
Zurück zum Zitat Navas-Anguita Z, García-Gusano D, Iribarren D (2020) Long-term production technology mix of alternative fuels for road transport: a focus on Spain. Energy Convers Manag 226:113498CrossRef Navas-Anguita Z, García-Gusano D, Iribarren D (2020) Long-term production technology mix of alternative fuels for road transport: a focus on Spain. Energy Convers Manag 226:113498CrossRef
11.
Zurück zum Zitat Brock D, Koder A, Rabl H-P, Touraud D, Kunz W (2020) Optimising the biodiesel production process: implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. Fuel. 264:116695CrossRef Brock D, Koder A, Rabl H-P, Touraud D, Kunz W (2020) Optimising the biodiesel production process: implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. Fuel. 264:116695CrossRef
12.
Zurück zum Zitat Bórawski P, Bełdycka-Bórawska A, Szymańska EJ, Jankowski KJ, Dubis B, Dunn JW (2019) Development of renewable energy sources market and biofuels in the European Union. J Clean Prod 228:467–484CrossRef Bórawski P, Bełdycka-Bórawska A, Szymańska EJ, Jankowski KJ, Dubis B, Dunn JW (2019) Development of renewable energy sources market and biofuels in the European Union. J Clean Prod 228:467–484CrossRef
13.
Zurück zum Zitat Yadala S, Smith JD, Young D, Crunkleton DW, Cremaschi S (2020) Optimization of the algal biomass to biodiesel supply chain: case studies of the state of Oklahoma and the United States. Processes. 8:476CrossRef Yadala S, Smith JD, Young D, Crunkleton DW, Cremaschi S (2020) Optimization of the algal biomass to biodiesel supply chain: case studies of the state of Oklahoma and the United States. Processes. 8:476CrossRef
14.
Zurück zum Zitat Aga WS, Fantaye SK, Jabasingh SA (2020) Biodiesel production from Ethiopian ‘Besana’-Croton macrostachyus seed: characterization and optimization. Renew Energy 157:574–584CrossRef Aga WS, Fantaye SK, Jabasingh SA (2020) Biodiesel production from Ethiopian ‘Besana’-Croton macrostachyus seed: characterization and optimization. Renew Energy 157:574–584CrossRef
15.
Zurück zum Zitat Adewuyi A (2020) Challenges and prospects of renewable energy in Nigeria: a case of bioethanol and biodiesel production. Energy Rep 6:77–88CrossRef Adewuyi A (2020) Challenges and prospects of renewable energy in Nigeria: a case of bioethanol and biodiesel production. Energy Rep 6:77–88CrossRef
16.
Zurück zum Zitat Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222CrossRef Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222CrossRef
17.
Zurück zum Zitat Wang Z, Zhuang J, Zhao A, Li X (2018) Types, harms and improvement of saline soil in Songnen Plain. IOP Conference Series: Materials Science and Engineering, p 52059 Wang Z, Zhuang J, Zhao A, Li X (2018) Types, harms and improvement of saline soil in Songnen Plain. IOP Conference Series: Materials Science and Engineering, p 52059
18.
Zurück zum Zitat Santaraite M, Sendzikiene E, Makareviciene V, Kazancev K (2020) Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media. Energies. 13:2588CrossRef Santaraite M, Sendzikiene E, Makareviciene V, Kazancev K (2020) Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media. Energies. 13:2588CrossRef
19.
Zurück zum Zitat Baral NR, Neupane P, Ale BB, Quiroz-Arita C, Manandhar S, Bradley TH (2020) Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renew Sust Energ Rev 120:109619CrossRef Baral NR, Neupane P, Ale BB, Quiroz-Arita C, Manandhar S, Bradley TH (2020) Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renew Sust Energ Rev 120:109619CrossRef
20.
Zurück zum Zitat Kumar S, Jain S, Kumar H (2017) Process parameter assessment of biodiesel production from a Jatropha–algae oil blend by response surface methodology and artificial neural network. Energ Source Part A 39:2119–2125  Kumar S, Jain S, Kumar H (2017) Process parameter assessment of biodiesel production from a Jatropha–algae oil blend by response surface methodology and artificial neural network. Energ Source Part A 39:2119–2125
21.
Zurück zum Zitat Wong W-Y, Lim S, Pang Y-L, Shuit S-H, Chen W-H, Lee K-T (2020) Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production. Sci Total Environ 727:138534CrossRef Wong W-Y, Lim S, Pang Y-L, Shuit S-H, Chen W-H, Lee K-T (2020) Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production. Sci Total Environ 727:138534CrossRef
22.
Zurück zum Zitat Elkelawy M, Bastawissi HA-E, Esmaeil KK, Radwan AM, Panchal H, Sadasivuni KK, Suresh M, Israr M (2020) Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel. 266:117072CrossRef Elkelawy M, Bastawissi HA-E, Esmaeil KK, Radwan AM, Panchal H, Sadasivuni KK, Suresh M, Israr M (2020) Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel. 266:117072CrossRef
23.
Zurück zum Zitat Al-Saadi A, Mathan B, He Y (2020) Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew Energy 158:388–399CrossRef Al-Saadi A, Mathan B, He Y (2020) Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew Energy 158:388–399CrossRef
24.
Zurück zum Zitat Chen C, Qu S, Guo M, Lu J, Yi W, Liu R, Ding J (2021) Waste limescale derived recyclable catalyst and soybean dregs oil for biodiesel production: analysis and optimization. Process Saf Environ Prot 149:465–475CrossRef Chen C, Qu S, Guo M, Lu J, Yi W, Liu R, Ding J (2021) Waste limescale derived recyclable catalyst and soybean dregs oil for biodiesel production: analysis and optimization. Process Saf Environ Prot 149:465–475CrossRef
25.
Zurück zum Zitat Kumar S (2020) Comparison of linear regression and artificial neural network technique for prediction of a soybean biodiesel yield. Energ Source Part A 42:1425–1435 Kumar S (2020) Comparison of linear regression and artificial neural network technique for prediction of a soybean biodiesel yield. Energ Source Part A 42:1425–1435
26.
Zurück zum Zitat Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J (2019) Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Fermentation. 5:51CrossRef Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner F-J (2019) Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Fermentation. 5:51CrossRef
27.
Zurück zum Zitat Andree BPJ, Chamorro A, Kraay A, Spencer P, Wang D (2020) Predicting food crises. Policy Research Working Paper;No. 9412. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/34510 License: CC BY 3.0 IGO.” Andree BPJ, Chamorro A, Kraay A, Spencer P, Wang D (2020) Predicting food crises. Policy Research Working Paper;No. 9412. World Bank, Washington, DC. © World Bank. https://​openknowledge.​worldbank.​org/​handle/​10986/​34510 License: CC BY 3.0 IGO.”
28.
Zurück zum Zitat Andrade LA, Barbosa JM, Barrozo MAS, Vieira LGM (2020) A comparative study of the behavior of Chlamydomonas reinhardtii and Spirulina platensis in solar catalytic pyrolysis. Int J Energy Res 44:5397–5411CrossRef Andrade LA, Barbosa JM, Barrozo MAS, Vieira LGM (2020) A comparative study of the behavior of Chlamydomonas reinhardtii and Spirulina platensis in solar catalytic pyrolysis. Int J Energy Res 44:5397–5411CrossRef
29.
Zurück zum Zitat Lau AKS, Bilad MR, Nordin N, Faungnawakij K, Narkkun T, Wang DK, Mahlia TMI, Jaafar J (2020) Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock. Renew Sust Energ Rev 120:109666CrossRef Lau AKS, Bilad MR, Nordin N, Faungnawakij K, Narkkun T, Wang DK, Mahlia TMI, Jaafar J (2020) Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock. Renew Sust Energ Rev 120:109666CrossRef
30.
Zurück zum Zitat Xu Z, Shao T, Lv Z, Yue Y, Liu A, Long X, Zhou Z, Gao X, Rengel Z (2020) The mechanisms of improving coastal saline soils by planting rice. Sci Total Environ 703:135529CrossRef Xu Z, Shao T, Lv Z, Yue Y, Liu A, Long X, Zhou Z, Gao X, Rengel Z (2020) The mechanisms of improving coastal saline soils by planting rice. Sci Total Environ 703:135529CrossRef
31.
Zurück zum Zitat Xia A, Sun C, Fu Q, Liao Q, Huang Y, Zhu X, Li Q (2020) Biofuel production from wet microalgae biomass: comparison of physicochemical properties and extraction performance. Energy. 212:118581CrossRef Xia A, Sun C, Fu Q, Liao Q, Huang Y, Zhu X, Li Q (2020) Biofuel production from wet microalgae biomass: comparison of physicochemical properties and extraction performance. Energy. 212:118581CrossRef
32.
Zurück zum Zitat Bošnjaković M, Sinaga N (2020) The perspective of large-scale production of algae biodiesel. Appl Sci 10:8181CrossRef Bošnjaković M, Sinaga N (2020) The perspective of large-scale production of algae biodiesel. Appl Sci 10:8181CrossRef
33.
Zurück zum Zitat Ganesan R, Manigandan S, Samuel MS, Shanmuganathan R, Brindhadevi K, Chi NTL, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep doi: 10.1016/j.btre.2020.e00509 Ganesan R, Manigandan S, Samuel MS, Shanmuganathan R, Brindhadevi K, Chi NTL, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep doi: 10.1016/j.btre.2020.e00509
34.
Zurück zum Zitat Krishnan S, Abd Ghani N, Aminuddin NF, Quraishi KS, Azman NS, Cravotto G, Leveque J-M (2020) Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renew Energy 149:244–252CrossRef Krishnan S, Abd Ghani N, Aminuddin NF, Quraishi KS, Azman NS, Cravotto G, Leveque J-M (2020) Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renew Energy 149:244–252CrossRef
35.
Zurück zum Zitat Koech AK, Kumar A, Siagi ZO (2020) In situ transesterification of Spirulina microalgae to produce biodiesel using microwave irradiation. J Energy 2020:1–10[if !supportLineBreakNewLine][endif] Koech AK, Kumar A, Siagi ZO (2020) In situ transesterification of Spirulina microalgae to produce biodiesel using microwave irradiation. J Energy 2020:1–10[if !supportLineBreakNewLine][endif]
36.
Zurück zum Zitat Shahi T, Zonouzi A, Beheshti B, Almasi M (2020) Comparison of four lipid extraction methods from microalgae Dunaliella sp. for biodiesel production. Iran J Chem Chem Eng 39:371–378 Shahi T, Zonouzi A, Beheshti B, Almasi M (2020) Comparison of four lipid extraction methods from microalgae Dunaliella sp. for biodiesel production. Iran J Chem Chem Eng 39:371–378
37.
Zurück zum Zitat Gomez L, Tiwari B, Garcia-Vaquero M (2020) Emerging extraction techniques: microwave-assisted extraction. In: Sustain. Seaweed Technol. Elsevier, pp 207–224 Gomez L, Tiwari B, Garcia-Vaquero M (2020) Emerging extraction techniques: microwave-assisted extraction. In: Sustain. Seaweed Technol. Elsevier, pp 207–224
38.
Zurück zum Zitat Patil S, Lali AM, Prakash G (2020) An efficient algae cell wall disruption methodology for recovery of intact chloroplasts from microalgae. J Appl Biol Biotechnol 8:23–28CrossRef Patil S, Lali AM, Prakash G (2020) An efficient algae cell wall disruption methodology for recovery of intact chloroplasts from microalgae. J Appl Biol Biotechnol 8:23–28CrossRef
39.
Zurück zum Zitat Kalsum U, Kusuma HS, Roesyadi A, Mahfud M (2018) Production biodiesel via in-situ transesterification from Chlorella sp. using microwave with base catalyst. Korean Chem Eng Res 56:773–778 Kalsum U, Kusuma HS, Roesyadi A, Mahfud M (2018) Production biodiesel via in-situ transesterification from Chlorella sp. using microwave with base catalyst. Korean Chem Eng Res 56:773–778
40.
Zurück zum Zitat Cancela Á, Maceiras R, Sánchez Á, Alfonsin V, Urrejola S (2016) Transesterification of marine macroalgae using microwave technology. Energ Source Part A 38:1598–1603 Cancela Á, Maceiras R, Sánchez Á, Alfonsin V, Urrejola S (2016) Transesterification of marine macroalgae using microwave technology. Energ Source Part A 38:1598–1603
41.
Zurück zum Zitat Marwan S and Indarti E (2015) Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor. J. Phys.: Conf. Ser. 622 012040 Marwan S and Indarti  E (2015) Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor. J. Phys.: Conf. Ser. 622 012040
42.
Zurück zum Zitat Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel. 115:720–726CrossRef Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel. 115:720–726CrossRef
43.
Zurück zum Zitat Pradana YS, Dewi RN, Di Livia K, Arisa F, Cahyono RB, Budiman A (2020) Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction–transesterification process using palm oil as a co-solvent of methanol. Open Chem 18:833–842CrossRef Pradana YS, Dewi RN, Di Livia K, Arisa F, Cahyono RB, Budiman A (2020) Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction–transesterification process using palm oil as a co-solvent of methanol. Open Chem 18:833–842CrossRef
44.
Zurück zum Zitat Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J, Lu X, Deng S (2016) Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel. 178:49–55CrossRef Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J, Lu X, Deng S (2016) Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel. 178:49–55CrossRef
45.
Zurück zum Zitat Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965–977CrossRef Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965–977CrossRef
46.
Zurück zum Zitat Said KAM, Amin MAM (2015) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Process Eng 2:8-17 Said KAM, Amin MAM (2015) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Process Eng 2:8-17
47.
Zurück zum Zitat Ardebili SMS, Hashjin TT, Ghobadian B, Najafi G, Mantegna S, Cravotto G (2015) Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Process Synth 4:259–267 Ardebili SMS, Hashjin TT, Ghobadian B, Najafi G, Mantegna S, Cravotto G (2015) Optimization of biodiesel synthesis under simultaneous ultrasound-microwave irradiation using response surface methodology (RSM). Green Process Synth 4:259–267
48.
Zurück zum Zitat Qadariyah L, Panjaitan MR, Mujaddid F, Kalsum U (2018) Biodiesel production from dry microalga biomass by microwave-assisted in-situ transesterification. In: MATEC Web Conf., EDP Sciences, p 6005 Qadariyah L, Panjaitan MR, Mujaddid F, Kalsum U (2018) Biodiesel production from dry microalga biomass by microwave-assisted in-situ transesterification. In: MATEC Web Conf., EDP Sciences, p 6005
49.
Zurück zum Zitat Kwon MH, Yeom SH (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol Bioprocess Eng 20:276–283CrossRef Kwon MH, Yeom SH (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol Bioprocess Eng 20:276–283CrossRef
50.
Zurück zum Zitat Wahidin S, Idris A, Shaleh SRM (2016) Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresour Technol 206:150–154CrossRef Wahidin S, Idris A, Shaleh SRM (2016) Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresour Technol 206:150–154CrossRef
51.
Zurück zum Zitat Cheng J, Qiu Y, Huang R, Yang W, Zhou J, Cen K (2016) Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresour Technol 221:344–349CrossRef Cheng J, Qiu Y, Huang R, Yang W, Zhou J, Cen K (2016) Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresour Technol 221:344–349CrossRef
52.
Zurück zum Zitat Wahidin S, Idris A, Yusof NM, Kamis NHH, Shaleh SRM (2018) Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag 171:1397–1404CrossRef Wahidin S, Idris A, Yusof NM, Kamis NHH, Shaleh SRM (2018) Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag 171:1397–1404CrossRef
53.
Zurück zum Zitat Fazril I, Shamsuddin AH, Nomanbhay S, Kusomo F, Hanif M, Zamri MFMA, Akhiar A, Ismail MF (2020) Microwave-assisted in situ transesterification of wet microalgae for the production of biodiesel: progress review. In: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, p 12078 Fazril I, Shamsuddin AH, Nomanbhay S, Kusomo F, Hanif M, Zamri MFMA, Akhiar A, Ismail MF (2020) Microwave-assisted in situ transesterification of wet microalgae for the production of biodiesel: progress review. In: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, p 12078
54.
Zurück zum Zitat Cheng J, Qiu Y, Zhang J, Huang R, Yang W, Fan Z (2017) Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts. Bioresour Technol 244:569–574CrossRef Cheng J, Qiu Y, Zhang J, Huang R, Yang W, Fan Z (2017) Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts. Bioresour Technol 244:569–574CrossRef
55.
Zurück zum Zitat Mitra M, Patidar SK, Mishra S (2015) Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresour Technol 193:363–369CrossRef Mitra M, Patidar SK, Mishra S (2015) Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresour Technol 193:363–369CrossRef
56.
Zurück zum Zitat de Jesus SS, Ferreira GF, Moreira LS, Maciel Filho R (2020) Biodiesel production from microalgae by direct transesterification using green solvents. Renew Energy 160:1283–1294CrossRef de Jesus SS, Ferreira GF, Moreira LS, Maciel Filho R (2020) Biodiesel production from microalgae by direct transesterification using green solvents. Renew Energy 160:1283–1294CrossRef
57.
Zurück zum Zitat Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers Bioref https://doi.org/10.1007/s13399-020-00843-6 Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers Bioref https://​doi.​org/​10.​1007/​s13399-020-00843-6
58.
Zurück zum Zitat Sitepu EK, Heimann K, Raston CL, Zhang W (2020) Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renew Sust Energ Rev 123:109762CrossRef Sitepu EK, Heimann K, Raston CL, Zhang W (2020) Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renew Sust Energ Rev 123:109762CrossRef
59.
Zurück zum Zitat Makareviciene V, Sendzikiene E, Gumbyte M (2020) Application of simultaneous oil extraction and transesterification in biodiesel fuel synthesis: a review. Energies. 13:2204CrossRef Makareviciene V, Sendzikiene E, Gumbyte M (2020) Application of simultaneous oil extraction and transesterification in biodiesel fuel synthesis: a review. Energies. 13:2204CrossRef
60.
Zurück zum Zitat Chamola R, Gupta A, Chauhan VS, Singh T (2020) Direct transesterification for biodiesel extraction from micro-algal biomass: a review. Int J Appl Eng Res 14:180–184 Chamola R, Gupta A, Chauhan VS, Singh T (2020) Direct transesterification for biodiesel extraction from micro-algal biomass: a review. Int J Appl Eng Res 14:180–184
61.
Zurück zum Zitat Gude VG, Patil PD, Deng S (2011) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. In: 40th ASES Natl. Sol. Conf. 2011, Sol. 2011, pp 376–382 Gude VG, Patil PD, Deng S (2011) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. In: 40th ASES Natl. Sol. Conf. 2011, Sol. 2011, pp 376–382
62.
Zurück zum Zitat Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:1–6 Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:1–6
63.
Zurück zum Zitat Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122CrossRef Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122CrossRef
64.
Zurück zum Zitat Sharmila S, Rebecca LJ (2012) GC-MS Analysis of esters of fatty acid present in biodiesel produced from Cladophora vagabunda. J Chem Pharm Res 4:4883–4887 Sharmila S, Rebecca LJ (2012) GC-MS Analysis of esters of fatty acid present in biodiesel produced from Cladophora vagabunda. J Chem Pharm Res 4:4883–4887
65.
Zurück zum Zitat Firemichael D, Hussen A, Abebe W (2020) Production and characterization of biodiesel and glycerine pellet from macroalgae strain: Cladophora glomerata. Bull Chem Soc Ethiop 34:249–258CrossRef Firemichael D, Hussen A, Abebe W (2020) Production and characterization of biodiesel and glycerine pellet from macroalgae strain: Cladophora glomerata. Bull Chem Soc Ethiop 34:249–258CrossRef
66.
Zurück zum Zitat Kumar S, Kumar S, Kumar A, Maurya S, Deswal V (2018) Experimental investigation of the influence of blending on engine emissions of the diesel engine fueled by mahua biodiesel oil. Energ Source Part A 40:994–998 Kumar S, Kumar S, Kumar A, Maurya S, Deswal V (2018) Experimental investigation of the influence of blending on engine emissions of the diesel engine fueled by mahua biodiesel oil. Energ Source Part A 40:994–998
67.
Zurück zum Zitat Rodsamran P, Sothornvit R (2019) Microwave heating extraction of pectin from lime peel: characterization and properties compared with the conventional heating method. Food Chem 278:364–372CrossRef Rodsamran P, Sothornvit R (2019) Microwave heating extraction of pectin from lime peel: characterization and properties compared with the conventional heating method. Food Chem 278:364–372CrossRef
68.
Zurück zum Zitat Sharif N, Munir N, Saleem F, Aslam F, Naz S (2015) Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production. Nat Prod Res 29:1938–1941CrossRef Sharif N, Munir N, Saleem F, Aslam F, Naz S (2015) Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production. Nat Prod Res 29:1938–1941CrossRef
69.
Zurück zum Zitat Munir N, Sharif N, Naz S, Saleem F, Manzoor F (2016) Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). Sci Technol Dev 32: 235-243 Munir N, Sharif N, Naz S, Saleem F, Manzoor F (2016) Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). Sci Technol Dev 32: 235-243
70.
Zurück zum Zitat Yuvarani M, Kubendran D, Salma Aathika AR, Karthik P, Premkumar MP, Karthikeyan V, Sivanesan S (2017) Extraction and characterization of oil from macroalgae Cladophora glomerata. Energ Source Part A 39:2133–2139 Yuvarani M, Kubendran D, Salma Aathika AR, Karthik P, Premkumar MP, Karthikeyan V, Sivanesan S (2017) Extraction and characterization of oil from macroalgae Cladophora glomerata. Energ Source Part A 39:2133–2139
71.
Zurück zum Zitat Haq I, Muhammad A, Hameed U (2014) Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters. Appl Biochem Microbiol 50:69–72CrossRef Haq I, Muhammad A, Hameed U (2014) Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters. Appl Biochem Microbiol 50:69–72CrossRef
Metadaten
Titel
Biodiesel production from new algal sources using response surface methodology and microwave application
verfasst von
Maria Hasnain
Zainul Abideen
Shagufta Naz
Ute Roessner
Neelma Munir
Publikationsdatum
15.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 7/2023
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-01560-4

Weitere Artikel der Ausgabe 7/2023

Biomass Conversion and Biorefinery 7/2023 Zur Ausgabe