Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 3/2017

Open Access 25.08.2017 | TECHNICAL ARTICLE

High Throughput Assays for Additively Manufactured Ti-Ni Alloys Based on Compositional Gradients and Spherical Indentation

verfasst von: X. Gong, S. Mohan, M. Mendoza, A. Gray, P. Collins, S. R. Kalidindi

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in additive manufacturing (AM) reveal an exciting opportunity to build materials with novel internal structures combined with intricate part geometries that cannot be achieved by traditional manufacturing approaches. The large space of potential material chemistries combined with non-equilibrium microstructures obtained in AM presents a significant challenge for a systematic exploration and optimization of the final properties exhibited by AM parts when using the existing knowledge databases established for conventionally processed materials. In this paper, we demonstrate novel high throughput assays that can be used to prototype a large library of material chemistries (and possibly different process histories) in small quantities, and subsequently apply spherical indentation stress-strain protocols to screen them for their mechanical performance. The potential of these new assays is demonstrated on a class of Ti-Ni alloys, whose Ni composition ranges between 0 and 11%wt.
Fußnoten
1
The authors recognize that the specifics of AMS 4999A may not be suitable for all alloys. However, the Ti-xNi system is an active (fast) eutectoid system, and is expected to reach a near equilibrium condition under these commonly used and industrially accepted conditions.
 
Literatur
1.
Zurück zum Zitat Collins PC, et al (2014) Progress Toward an Integration of Process – Structure – Property – Performance Models for “Three-Dimensional (3-D) Printing” of Titanium Alloys JOM 66(7):1299–1309 Collins PC, et al (2014) Progress Toward an Integration of Process – Structure – Property – Performance Models for “Three-Dimensional (3-D) Printing” of Titanium Alloys JOM 66(7):1299–1309
2.
Zurück zum Zitat Zagrebelnyy D, Krane MJM (2009) Segregation Development in Multiple Melt Vacuum Arc Remelting. Metall Mater Trans B Process Metall Mater Process Sci 40(3):281–288CrossRef Zagrebelnyy D, Krane MJM (2009) Segregation Development in Multiple Melt Vacuum Arc Remelting. Metall Mater Trans B Process Metall Mater Process Sci 40(3):281–288CrossRef
3.
4.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRef
5.
Zurück zum Zitat Salzbrenner B et al (2016) Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15–0664), 2016, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) Salzbrenner B et al (2016) Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15–0664), 2016, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
6.
Zurück zum Zitat Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36CrossRef Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36CrossRef
7.
Zurück zum Zitat Weaver JS et al (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34CrossRef Weaver JS et al (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34CrossRef
8.
Zurück zum Zitat Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRef Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRef
9.
Zurück zum Zitat Pathak S et al (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24(03):1142–1155CrossRef Pathak S et al (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24(03):1142–1155CrossRef
10.
Zurück zum Zitat Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRef Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRef
11.
Zurück zum Zitat Pathak S, Kalidindi SR, Mara NA (2015) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. SMM 113:241–245 Pathak S, Kalidindi SR, Mara NA (2015) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. SMM 113:241–245
12.
Zurück zum Zitat Vachhani SJ, Doherty RD, Kalidindi SR (2013) Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751CrossRef Vachhani SJ, Doherty RD, Kalidindi SR (2013) Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751CrossRef
13.
Zurück zum Zitat Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements. Mater Des 111(5 Dec 2016):463–472 Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements. Mater Des 111(5 Dec 2016):463–472
14.
Zurück zum Zitat Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef
15.
Zurück zum Zitat Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRef Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRef
16.
Zurück zum Zitat Pharr GM, Bolshakov A (2002) Understanding nanoindentation unloading curves. J Mater Res 17(10):2660–2671CrossRef Pharr GM, Bolshakov A (2002) Understanding nanoindentation unloading curves. J Mater Res 17(10):2660–2671CrossRef
17.
Zurück zum Zitat Banerjee R et al (2003) Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mater 51(11):3277–3292CrossRef Banerjee R et al (2003) Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mater 51(11):3277–3292CrossRef
18.
Zurück zum Zitat Geng J et al (2016) Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: application of laser engineered net shaping (LENS (TM)). JOM 68(7):1972–1977CrossRef Geng J et al (2016) Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: application of laser engineered net shaping (LENS (TM)). JOM 68(7):1972–1977CrossRef
19.
Zurück zum Zitat Samimi P et al (2014) A novel tool to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xMo alloys at 650 degrees C. Corros Sci 89:295–306CrossRef Samimi P et al (2014) A novel tool to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xMo alloys at 650 degrees C. Corros Sci 89:295–306CrossRef
20.
Zurück zum Zitat Polanski M et al (2013) Combinatorial synthesis of alloy libraries with a progressive composition gradient using laser engineered net shaping (LENS): hydrogen storage alloys. Int J Hydrog Energy 38(27):12159–12171CrossRef Polanski M et al (2013) Combinatorial synthesis of alloy libraries with a progressive composition gradient using laser engineered net shaping (LENS): hydrogen storage alloys. Int J Hydrog Energy 38(27):12159–12171CrossRef
21.
Zurück zum Zitat Samimi P et al (2015) A new combinatorial approach to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xCr alloys at 650 degrees C. Corros Sci 97:150–160CrossRef Samimi P et al (2015) A new combinatorial approach to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xCr alloys at 650 degrees C. Corros Sci 97:150–160CrossRef
22.
Zurück zum Zitat Schwendner KI et al (2001) Direct laser deposition of alloys from elemental powder blends. Scr Mater 45(10):1123–1129CrossRef Schwendner KI et al (2001) Direct laser deposition of alloys from elemental powder blends. Scr Mater 45(10):1123–1129CrossRef
23.
Zurück zum Zitat Collins PC, Banerjee R, Fraser HL (2003) The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends. Scr Mater 48(10):1445–1450CrossRef Collins PC, Banerjee R, Fraser HL (2003) The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends. Scr Mater 48(10):1445–1450CrossRef
24.
Zurück zum Zitat Collins PC et al (2016) Microstructural Control of Additively Manufactured Metallic Materials. Annu Rev Mater Res 46:63–91CrossRef Collins PC et al (2016) Microstructural Control of Additively Manufactured Metallic Materials. Annu Rev Mater Res 46:63–91CrossRef
25.
Zurück zum Zitat Khosravani A, Ahmet C, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69CrossRef Khosravani A, Ahmet C, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69CrossRef
26.
Zurück zum Zitat Sharpe WN et al (2003) Tensile testing of MEMS materials—recent progress. J Mater Sci 38(20):4075–4079CrossRef Sharpe WN et al (2003) Tensile testing of MEMS materials—recent progress. J Mater Sci 38(20):4075–4079CrossRef
27.
Zurück zum Zitat Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529CrossRef Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529CrossRef
28.
Zurück zum Zitat Frick CP et al (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A 489(1–2):319–329CrossRef Frick CP et al (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A 489(1–2):319–329CrossRef
29.
Zurück zum Zitat Shan ZW et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7(2):115–119CrossRef Shan ZW et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7(2):115–119CrossRef
30.
Zurück zum Zitat Bei H et al (2007) Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr Mater 57(5):397–400CrossRef Bei H et al (2007) Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr Mater 57(5):397–400CrossRef
31.
Zurück zum Zitat Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRef Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRef
32.
Zurück zum Zitat Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116CrossRef Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116CrossRef
33.
Zurück zum Zitat Johnson KL (2009) Contact mechanics. Proc Inst Mech Eng Part J-J Eng Tribol 223(J3):254–254 Johnson KL (2009) Contact mechanics. Proc Inst Mech Eng Part J-J Eng Tribol 223(J3):254–254
34.
Zurück zum Zitat Hertz H (1896) Miscellaneous papers. Macmillan Hertz H (1896) Miscellaneous papers. Macmillan
35.
Zurück zum Zitat Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36CrossRef Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36CrossRef
36.
Zurück zum Zitat Pathak S, Kalidindi SR, Mara NA (2016) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. Scr Mater 113:241–245CrossRef Pathak S, Kalidindi SR, Mara NA (2016) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. Scr Mater 113:241–245CrossRef
37.
Zurück zum Zitat Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRef Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRef
38.
Zurück zum Zitat Fan Z, Liou F (2012) Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. Titanium alloys–towards achieving enhanced properties for diversified applications: p. 3–28 Fan Z, Liou F (2012) Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. Titanium alloys–towards achieving enhanced properties for diversified applications: p. 3–28
39.
Zurück zum Zitat Baker AH, Collins PC, Williams JC (2017) New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys. JOM 69(7):1211–1227 Baker AH, Collins PC, Williams JC (2017) New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys. JOM 69(7):1211–1227
40.
Zurück zum Zitat Mendoza MY et al (2017) Microstructures and Grain Refinement of Additive-Manufactured Ti-xW Alloys. Metall Mater Trans A 48(7):3594–3605 Mendoza MY et al (2017) Microstructures and Grain Refinement of Additive-Manufactured Ti-xW Alloys. Metall Mater Trans A 48(7):3594–3605
41.
Zurück zum Zitat Mantri, S., et al., The effect of boron on the grain size and texture in additively manufactured β-Ti alloys. J Mater Sci: 52(10):12455–12466 Mantri, S., et al., The effect of boron on the grain size and texture in additively manufactured β-Ti alloys. J Mater Sci: 52(10):12455–12466
42.
Zurück zum Zitat Rolchigo MR, Mendoza MY, Samimi P, Brice DA, Martin B, Collins PC et al (2017) Modeling of Ti-W solidification microstructures under additive manufacturing conditions. Metall Mater Trans A 48:3606–3622 Rolchigo MR, Mendoza MY, Samimi P, Brice DA, Martin B, Collins PC et al (2017) Modeling of Ti-W solidification microstructures under additive manufacturing conditions. Metall Mater Trans A 48:3606–3622
43.
Zurück zum Zitat Dutta B, Froes FHS (2016) Additive manufacturing of titanium alloys. Butterworth-Heinemann Limited Dutta B, Froes FHS (2016) Additive manufacturing of titanium alloys. Butterworth-Heinemann Limited
44.
Zurück zum Zitat SAE International (2011) Titanium Alloy Direct Deposited Products 6Al - 4V Annealed, SAE Standard AMS4999A SAE International (2011) Titanium Alloy Direct Deposited Products 6Al - 4V Annealed, SAE Standard AMS4999A
45.
Zurück zum Zitat Williams JC, Baggerly RG, Paton NE (2002) Deformation behavior of HCP Ti-Al alloy single crystals. Metall Mater Trans A 33(3):837–850 Williams JC, Baggerly RG, Paton NE (2002) Deformation behavior of HCP Ti-Al alloy single crystals. Metall Mater Trans A 33(3):837–850
46.
Zurück zum Zitat Kwon J et al (2013) Characterization of deformation anisotropies in an α-Ti alloy by nanoindentation and electron microscopy. Acta Mater 61(13):4743–4756CrossRef Kwon J et al (2013) Characterization of deformation anisotropies in an α-Ti alloy by nanoindentation and electron microscopy. Acta Mater 61(13):4743–4756CrossRef
47.
Zurück zum Zitat Savage MF et al (2001) Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater Sci Eng 319:398–403CrossRef Savage MF et al (2001) Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater Sci Eng 319:398–403CrossRef
48.
Zurück zum Zitat Savage MF, Tatalovich J, Mills MJ (2004) Anisotropy in the room-temperature deformation of alpha-beta colonies in titanium alloys: role of the alpha-beta interface. Philos Mag 84(11):1127–1154CrossRef Savage MF, Tatalovich J, Mills MJ (2004) Anisotropy in the room-temperature deformation of alpha-beta colonies in titanium alloys: role of the alpha-beta interface. Philos Mag 84(11):1127–1154CrossRef
49.
Zurück zum Zitat Neeraj T et al (2005) Observation of tension-compression asymmetry in alpha and alpha/beta titanium alloys. Philos Mag 85(2–3):279–295CrossRef Neeraj T et al (2005) Observation of tension-compression asymmetry in alpha and alpha/beta titanium alloys. Philos Mag 85(2–3):279–295CrossRef
50.
Zurück zum Zitat Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef
51.
Zurück zum Zitat Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168CrossRef Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168CrossRef
52.
Zurück zum Zitat Torquato S, Lu B (1993) Chord-length distribution function for 2-phase random-media. Phys Rev E 47(4):2950–2953CrossRef Torquato S, Lu B (1993) Chord-length distribution function for 2-phase random-media. Phys Rev E 47(4):2950–2953CrossRef
53.
Zurück zum Zitat Lu BL, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922–929CrossRef Lu BL, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922–929CrossRef
54.
Zurück zum Zitat Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41CrossRef Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41CrossRef
55.
Zurück zum Zitat Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242CrossRef Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242CrossRef
56.
Zurück zum Zitat Dipen KP, Kalidindi DR (2016) Engineering M Correlation of spherical nanoindentation stress-strain curves to simple compression stress- strain curves for elastic-plastic isotropic materials based on finite element models. Acta Mater 112:295–302 Dipen KP, Kalidindi DR (2016) Engineering M Correlation of spherical nanoindentation stress-strain curves to simple compression stress- strain curves for elastic-plastic isotropic materials based on finite element models. Acta Mater 112:295–302
57.
Zurück zum Zitat Weaver JS, Khosravani A, Castillo A, Kalidindi SR (2016) High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Int Mater Manuf Innov 5(1):1–20. https://doi.org/10.1186/s40192-016-0054-3 Weaver JS, Khosravani A, Castillo A, Kalidindi SR (2016) High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Int Mater Manuf Innov 5(1):1–20. https://​doi.​org/​10.​1186/​s40192-016-0054-3
58.
Zurück zum Zitat Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30CrossRef Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30CrossRef
59.
Zurück zum Zitat Smith WF et al (2006) Fundamentos de la ciencia e ingeniería de materiales: McGraw-Hill Smith WF et al (2006) Fundamentos de la ciencia e ingeniería de materiales: McGraw-Hill
60.
Zurück zum Zitat Dieter GE, Bacon DJ (1986) Mechanical metallurgy, vol 3. McGraw-hill, New York Dieter GE, Bacon DJ (1986) Mechanical metallurgy, vol 3. McGraw-hill, New York
61.
Zurück zum Zitat Fizanne-Michel C et al (2014) Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques. Mater Sci Eng A 613:159–162CrossRef Fizanne-Michel C et al (2014) Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques. Mater Sci Eng A 613:159–162CrossRef
62.
Zurück zum Zitat Voigt W (1910) Lehrbuch der Kristallphysik, Leipzig, Berlin Voigt W (1910) Lehrbuch der Kristallphysik, Leipzig, Berlin
63.
Zurück zum Zitat Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58 Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58
64.
Zurück zum Zitat Toprek D, Belosevic-Cavor J, Koteski V (2015) Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi 2 intermetallic. J Phys Chem Solids 85:197–205CrossRef Toprek D, Belosevic-Cavor J, Koteski V (2015) Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi 2 intermetallic. J Phys Chem Solids 85:197–205CrossRef
65.
Zurück zum Zitat Rivera-Diaz-del-Castillo PE, Xu W (2011) Heat treatment and composition optimization of nanoprecipitation hardened alloys. Mater Manuf Process 26(3):375–381CrossRef Rivera-Diaz-del-Castillo PE, Xu W (2011) Heat treatment and composition optimization of nanoprecipitation hardened alloys. Mater Manuf Process 26(3):375–381CrossRef
66.
Zurück zum Zitat Materials Properties Handbook: Titanium Alloys, ed. E.W.C. R. Boyer, and G. Welsch 1993: ASM International Materials Properties Handbook: Titanium Alloys, ed. E.W.C. R. Boyer, and G. Welsch 1993: ASM International
68.
Zurück zum Zitat Stringfellow RG, Parks DM (1991) A self-consistent model of isotropic viscoplastic behavior in multiphase materials. Int J Plast 7(6):529–547CrossRef Stringfellow RG, Parks DM (1991) A self-consistent model of isotropic viscoplastic behavior in multiphase materials. Int J Plast 7(6):529–547CrossRef
69.
Zurück zum Zitat Lütjering G (1998) Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A 243(1–2):32–45CrossRef Lütjering G (1998) Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A 243(1–2):32–45CrossRef
Metadaten
Titel
High Throughput Assays for Additively Manufactured Ti-Ni Alloys Based on Compositional Gradients and Spherical Indentation
verfasst von
X. Gong
S. Mohan
M. Mendoza
A. Gray
P. Collins
S. R. Kalidindi
Publikationsdatum
25.08.2017
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 3/2017
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-017-0100-9

Weitere Artikel der Ausgabe 3/2017

Integrating Materials and Manufacturing Innovation 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.