Skip to main content
Erschienen in: Advances in Manufacturing 1/2018

09.02.2018

Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites

verfasst von: Yu Dong, Jamie Milentis, Alokesh Pramanik

Erschienen in: Advances in Manufacturing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

3D printing in additive manufacturing is considered as one of key technologies to the future high-precision manufacturing in order to benefit diverse industries in building construction, product development, biomedical innovation, etc. The increasing applications of 3D printed components depend primarily on their significant merits of reduced weight, minimum used materials, high precision and shorter production time. Furthermore, it is very crucial that such 3D printed components can maintain the same or even better material performance and product quality as those achieved by conventional manufacturing methods. This study successfully fabricated 3D printed mechanical testing samples of PLA and PLA/wood fibre composites. 3D printing parameters including infill density, layer height and the number of shells were investigated via design of experiments (DoE), among which the number of shells was determined as the most significant factor for maximising tensile strengths of PLA samples. Further, DoE work evaluated the effect of material type (i.e., neat PLA and PLA/wood fibres) and the number of shells on tensile, flexural and impact strengths of material samples. It is suggested that material type is the only predominant factor for maximising all mechanical strengths, which however are consistently lower for PLA/wood fibre composites when compared with those of neat PLA. Increasing the number of shells, on the other hand, has been found to improve almost all strength levels and decrease infill cavities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen D, Heyer S, Ibbotson S et al (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef Chen D, Heyer S, Ibbotson S et al (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625CrossRef
2.
Zurück zum Zitat Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785CrossRef Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785CrossRef
3.
Zurück zum Zitat Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Des 69:65–89CrossRef Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Des 69:65–89CrossRef
4.
Zurück zum Zitat Li X, Cui R, Sun L et al (2014) 3D-printed biopolymers for tissue engineering application. Int J Polym Sci 24:1–13 Li X, Cui R, Sun L et al (2014) 3D-printed biopolymers for tissue engineering application. Int J Polym Sci 24:1–13
5.
Zurück zum Zitat Patricio T, Domingos M, Gloria A et al (2013) Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP 5:110–114CrossRef Patricio T, Domingos M, Gloria A et al (2013) Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP 5:110–114CrossRef
6.
Zurück zum Zitat Senatov FS, Niaza KV, Zadorozhnyy MY et al (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based Porous scaffolds. J Mech Behav Biomed Mater 57:139–148CrossRef Senatov FS, Niaza KV, Zadorozhnyy MY et al (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based Porous scaffolds. J Mech Behav Biomed Mater 57:139–148CrossRef
7.
Zurück zum Zitat Rosenzweig DH, Carelli E, Steffen T et al (2015) 3D-printed ABS and PLA scaffolds for cartilage and mucleus pulposus tissue regeneration. Int J Mol Sci 16:15118–15135CrossRef Rosenzweig DH, Carelli E, Steffen T et al (2015) 3D-printed ABS and PLA scaffolds for cartilage and mucleus pulposus tissue regeneration. Int J Mol Sci 16:15118–15135CrossRef
8.
Zurück zum Zitat Inzana JA, Olvera D, Fuller SM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef Inzana JA, Olvera D, Fuller SM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef
9.
Zurück zum Zitat Bakarich SE, Gorkin IR, Panhuis MIH et al (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6:15998–16006CrossRef Bakarich SE, Gorkin IR, Panhuis MIH et al (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6:15998–16006CrossRef
10.
Zurück zum Zitat Le Duigou A, Castro M, Bevan R et al (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114CrossRef Le Duigou A, Castro M, Bevan R et al (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114CrossRef
11.
Zurück zum Zitat Suwanprateeb J, Sanngam R, Suvannapruk W et al (2009) Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci-Mater Med 20:1281–1289CrossRef Suwanprateeb J, Sanngam R, Suvannapruk W et al (2009) Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci-Mater Med 20:1281–1289CrossRef
12.
Zurück zum Zitat Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935CrossRef Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935CrossRef
13.
Zurück zum Zitat Richter C, Lipson H (2011) Untethered hovering flapping flight of a 3D-printed mechanical insect. Artif Life 17:73–86CrossRef Richter C, Lipson H (2011) Untethered hovering flapping flight of a 3D-printed mechanical insect. Artif Life 17:73–86CrossRef
14.
Zurück zum Zitat Park SH (1996) Robust design and analysis for quality engineering. Chapman & Hall, London Park SH (1996) Robust design and analysis for quality engineering. Chapman & Hall, London
15.
Zurück zum Zitat Dong Y, Bhattacharyya D (2008) Effect of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Compos Part A Appl Sci Manuf 39:1177–1191CrossRef Dong Y, Bhattacharyya D (2008) Effect of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Compos Part A Appl Sci Manuf 39:1177–1191CrossRef
16.
Zurück zum Zitat Dong Y, Bickford T, Haroosh HJ et al (2013) Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects. Appl Phys A Mater Sci Process 112:747–757CrossRef Dong Y, Bickford T, Haroosh HJ et al (2013) Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects. Appl Phys A Mater Sci Process 112:747–757CrossRef
Metadaten
Titel
Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites
verfasst von
Yu Dong
Jamie Milentis
Alokesh Pramanik
Publikationsdatum
09.02.2018
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 1/2018
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-018-0211-3

Weitere Artikel der Ausgabe 1/2018

Advances in Manufacturing 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.