Skip to main content
Erschienen in: Journal of Iron and Steel Research International 12/2018

01.12.2018 | Original Paper

Improved hydrogen storage performance of as-milled Sm–Mg–Ni alloy by adding CeO2

verfasst von: Yang-huan Zhang, Kai-feng Zhang, Ze-ming Yuan, Ya-qin Li, Hong-wei Shang, Yan Qi, Xiao-ping Dong, Dong-liang Zhao

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To investigate the influence of adding CeO2 on the hydrogen storage characteristics of Sm–Mg–Ni-based SmMg11Ni-type alloy, mechanical milling was utilized to synthesize SmMg11Ni and SmMg11Ni + 5 wt.% CeO2 (named SmMg11Ni–5CeO2) alloys. The microstructure of as-cast and as-milled samples was measured via X-ray diffractometer and transmission electron microscope. Sieverts device was utilized to measure the isothermal hydriding and dehydriding kinetics. The non-isothermal dehydrogenation performance was explored by thermogravimetry and differential scanning calorimetry. The hydrogen desorption activation energy of the compound metal hydride can be computed by both Arrhenius and Kissinger methods. The related data show that adding CeO2 can engender a very slight influence on the hydrogen storage thermodynamics, but it can result in an obvious reduction in hydrogen absorption and desorption capacities. Furthermore, the hydrogen desorption performance of experimental alloys is conspicuously ameliorated by the addition of CeO2, viz. lowering the initial hydrogen desorption temperature and enhancing hydrogen desorption rate. The hydrogen desorption activation energies with and without CeO2 addition are 84.28 and 100.31 kJ/mol, respectively, with an obvious decrease of 16.03 kJ/mol. This is thought to be responsible for the ameliorated hydrogen desorption kinetics by adding CeO2.
Literatur
[1]
Zurück zum Zitat F. Hu, Y.H. Zhang, Y. Zhang, J.Y. Xu, Y. Cai, L.B. Deng, Int. J. Mater. Res. 105 (2014) 39–43.CrossRef F. Hu, Y.H. Zhang, Y. Zhang, J.Y. Xu, Y. Cai, L.B. Deng, Int. J. Mater. Res. 105 (2014) 39–43.CrossRef
[2]
Zurück zum Zitat Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.CrossRef Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.CrossRef
[3]
Zurück zum Zitat M.U. Niemann, S.S. Srinivasan, A. Kumar, E.K. Stefanakos, D.Y. Goswami, K. McGrath, Int. J. Hydrogen Energy 34 (2009) 8086–8093.CrossRef M.U. Niemann, S.S. Srinivasan, A. Kumar, E.K. Stefanakos, D.Y. Goswami, K. McGrath, Int. J. Hydrogen Energy 34 (2009) 8086–8093.CrossRef
[4]
[5]
Zurück zum Zitat V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, J.M. Tarascon, Int. J. Hydrogen Energy 32 (2007) 4900–4906.CrossRef V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, J.M. Tarascon, Int. J. Hydrogen Energy 32 (2007) 4900–4906.CrossRef
[6]
Zurück zum Zitat M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.CrossRef M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.CrossRef
[7]
Zurück zum Zitat Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.CrossRef Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.CrossRef
[8]
Zurück zum Zitat L. Shaw, J. Pratt, L. Klebanoff, T. Johnson, M. Arienti, M. Moreno, Int. J. Hydrogen Energy 38 (2013) 2810–2823.CrossRef L. Shaw, J. Pratt, L. Klebanoff, T. Johnson, M. Arienti, M. Moreno, Int. J. Hydrogen Energy 38 (2013) 2810–2823.CrossRef
[9]
Zurück zum Zitat D.R. Leiva, D. Fruchart, M. Bacia, G. Girard, N. Skryabina, A.C.S. Villela, S. Miraglia, D.S. Santos, W.J. Botta, Int. J. Mater. Res. 100 (2009) 1739–1746.CrossRef D.R. Leiva, D. Fruchart, M. Bacia, G. Girard, N. Skryabina, A.C.S. Villela, S. Miraglia, D.S. Santos, W.J. Botta, Int. J. Mater. Res. 100 (2009) 1739–1746.CrossRef
[10]
Zurück zum Zitat Y.H. Zhang, T. Yang, T.T. Zhai, Z.M. Yuan, X.P. Dong, D.L. Zhao, Int. J. Mater. Res. 105 (2014) 1159–1165.CrossRef Y.H. Zhang, T. Yang, T.T. Zhai, Z.M. Yuan, X.P. Dong, D.L. Zhao, Int. J. Mater. Res. 105 (2014) 1159–1165.CrossRef
[11]
Zurück zum Zitat M. Suleiman, D. Fritsch, C. Borchers, M. Guerdane, A. Pundt, Int. J. Mater. Res. 99 (2008) 528–534.CrossRef M. Suleiman, D. Fritsch, C. Borchers, M. Guerdane, A. Pundt, Int. J. Mater. Res. 99 (2008) 528–534.CrossRef
[12]
Zurück zum Zitat J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Guo, S. Zhou, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.CrossRef J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Guo, S. Zhou, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.CrossRef
[13]
Zurück zum Zitat J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev, D. Radev, J. Alloy. Compd. 366 (2004) 298–302.CrossRef J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev, D. Radev, J. Alloy. Compd. 366 (2004) 298–302.CrossRef
[14]
Zurück zum Zitat S. Long, J.X. Zou, X. Chen, X.Q. Zeng, W.J. Ding, J. Alloy. Compd. 615 (2014) S684-S688.CrossRef S. Long, J.X. Zou, X. Chen, X.Q. Zeng, W.J. Ding, J. Alloy. Compd. 615 (2014) S684-S688.CrossRef
[15]
Zurück zum Zitat S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 39 (2014) 16486–16492.CrossRef S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 39 (2014) 16486–16492.CrossRef
[16]
Zurück zum Zitat I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 36 (2011) 12909–12917.CrossRef I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 36 (2011) 12909–12917.CrossRef
[17]
Zurück zum Zitat F.P. Luo, H. Wang, L.Z. Ouyang, M.Q. Zeng, J.W. Liu, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 10912–10918.CrossRef F.P. Luo, H. Wang, L.Z. Ouyang, M.Q. Zeng, J.W. Liu, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 10912–10918.CrossRef
[18]
Zurück zum Zitat D. Pukazhselvan, G. Capurso, A. Maddalena, S.L. Russo, D.P. Fagg, Int. J. Hydrogen Energy 39 (2014) 20045–20053.CrossRef D. Pukazhselvan, G. Capurso, A. Maddalena, S.L. Russo, D.P. Fagg, Int. J. Hydrogen Energy 39 (2014) 20045–20053.CrossRef
[19]
Zurück zum Zitat H.Y. Zhou, X.X. Lan, Z.M. Wang, Q.R. Yao, C.Y. Ni, W.P. Liu, Int. J. Hydrogen Energy 37 (2012) 13178–13184.CrossRef H.Y. Zhou, X.X. Lan, Z.M. Wang, Q.R. Yao, C.Y. Ni, W.P. Liu, Int. J. Hydrogen Energy 37 (2012) 13178–13184.CrossRef
[20]
[21]
Zurück zum Zitat Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.CrossRef Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.CrossRef
[22]
Zurück zum Zitat M. Daryani, A. Simchi, M. Sadati, H.M. Hosseini, H. Targholizadeh, M. Khakbiz, Int. J. Hydrogen Energy 39 (2014) 21007–21014.CrossRef M. Daryani, A. Simchi, M. Sadati, H.M. Hosseini, H. Targholizadeh, M. Khakbiz, Int. J. Hydrogen Energy 39 (2014) 21007–21014.CrossRef
[23]
Zurück zum Zitat T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.CrossRef T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.CrossRef
[24]
Zurück zum Zitat M.S. El-Eskandarany, E. Shaban, A. Al-Shemmiri, Int. J. Hydrogen Energy 39 (2014) 21097–21106.CrossRef M.S. El-Eskandarany, E. Shaban, A. Al-Shemmiri, Int. J. Hydrogen Energy 39 (2014) 21097–21106.CrossRef
[25]
Zurück zum Zitat S. Agarwal, A. Jain, P. Jain, M. Jangir, D. Vyas, I.P. Jain, J. Alloy. Compd. 645 (2015) S518-S523.CrossRef S. Agarwal, A. Jain, P. Jain, M. Jangir, D. Vyas, I.P. Jain, J. Alloy. Compd. 645 (2015) S518-S523.CrossRef
[26]
Zurück zum Zitat Y.H. Zhang, Z.M. Yuan, T. Yang, D.C. Feng, Y. Cai, D.L. Zhao, J. Alloy. Compd. 688 (2016) 585–593.CrossRef Y.H. Zhang, Z.M. Yuan, T. Yang, D.C. Feng, Y. Cai, D.L. Zhao, J. Alloy. Compd. 688 (2016) 585–593.CrossRef
[27]
Zurück zum Zitat Y.H. Zhang, B.W. Li, H.P. Ren, T. Yang, S.H. Guo, Y. Qi, D.L. Zhao, J. Mater. Sci. Technol. 32 (2016) 218–225.CrossRef Y.H. Zhang, B.W. Li, H.P. Ren, T. Yang, S.H. Guo, Y. Qi, D.L. Zhao, J. Mater. Sci. Technol. 32 (2016) 218–225.CrossRef
[28]
Zurück zum Zitat Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586. Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586.
[29]
Zurück zum Zitat Rafi-ud-din, X.H. Qu, G.H. Zahid, Z. Asghar, M. Shahzad, M. Iqbal, E. Ahmad, J. Alloy. Compd. 604 (2014) 317–324.CrossRef Rafi-ud-din, X.H. Qu, G.H. Zahid, Z. Asghar, M. Shahzad, M. Iqbal, E. Ahmad, J. Alloy. Compd. 604 (2014) 317–324.CrossRef
[30]
Zurück zum Zitat Y.H. Zhang, Z.C. Jia, Z.M. Yuan, Y. Qi, Z.H. Hou, D.L. Zhao, Int. J. Mater. Res. 107 (2016) 348–355.CrossRef Y.H. Zhang, Z.C. Jia, Z.M. Yuan, Y. Qi, Z.H. Hou, D.L. Zhao, Int. J. Mater. Res. 107 (2016) 348–355.CrossRef
[31]
Zurück zum Zitat J.X. Zou, H. Guo, X.Q. Zeng, S. Zhou, X. Chen, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 8852–8862.CrossRef J.X. Zou, H. Guo, X.Q. Zeng, S. Zhou, X. Chen, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 8852–8862.CrossRef
[32]
Zurück zum Zitat S. Cheung, W.Q. Deng, A.C. T. van Duin, W.A. Goddard, J. Phys. Chem. A 109 (2005) 851–859.CrossRef S. Cheung, W.Q. Deng, A.C. T. van Duin, W.A. Goddard, J. Phys. Chem. A 109 (2005) 851–859.CrossRef
[33]
Zurück zum Zitat M. Paskevicius, D.A. Sheppard, C.E. Buckley, JACS 132 (2010) 5077–5083.CrossRef M. Paskevicius, D.A. Sheppard, C.E. Buckley, JACS 132 (2010) 5077–5083.CrossRef
[34]
Zurück zum Zitat B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007) 1121–1140.CrossRef B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007) 1121–1140.CrossRef
[35]
Zurück zum Zitat N.S. Mustafa, M. Ismail, Int. J. Hydrogen Energy 39 (2014) 15563–15569.CrossRef N.S. Mustafa, M. Ismail, Int. J. Hydrogen Energy 39 (2014) 15563–15569.CrossRef
[36]
Zurück zum Zitat Y.H. Zhang, S.S. Cui, X.P. Song, P.L. Zhang, Y.G. Zhu, Y. Cai, Int. J. Mater. Res. 107 (2016) 605–614.CrossRef Y.H. Zhang, S.S. Cui, X.P. Song, P.L. Zhang, Y.G. Zhu, Y. Cai, Int. J. Mater. Res. 107 (2016) 605–614.CrossRef
[37]
Zurück zum Zitat T. Czujko, R.A. Varin, C. Chiu, Z. Wronski, J. Alloy. Compd. 414 (2006) 240–247.CrossRef T. Czujko, R.A. Varin, C. Chiu, Z. Wronski, J. Alloy. Compd. 414 (2006) 240–247.CrossRef
[38]
Zurück zum Zitat T. Kimura, H. Miyaoka, T. Ichikawa, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 13728–13733.CrossRef T. Kimura, H. Miyaoka, T. Ichikawa, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 13728–13733.CrossRef
[39]
Zurück zum Zitat J.F. Mao, Z.P. Guo, X.B. Yu, H.K. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy 35 (2010) 4569–4575.CrossRef J.F. Mao, Z.P. Guo, X.B. Yu, H.K. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy 35 (2010) 4569–4575.CrossRef
[41]
Zurück zum Zitat H.J. Lin, C. Zhang, H. Wang, L.Z. Ouyang, Y.F. Zhu, L.Q. Li, W.H. Wang, M. Zhu, J. Alloy. Compd. 685 (2016) 272–277.CrossRef H.J. Lin, C. Zhang, H. Wang, L.Z. Ouyang, Y.F. Zhu, L.Q. Li, W.H. Wang, M. Zhu, J. Alloy. Compd. 685 (2016) 272–277.CrossRef
Metadaten
Titel
Improved hydrogen storage performance of as-milled Sm–Mg–Ni alloy by adding CeO2
verfasst von
Yang-huan Zhang
Kai-feng Zhang
Ze-ming Yuan
Ya-qin Li
Hong-wei Shang
Yan Qi
Xiao-ping Dong
Dong-liang Zhao
Publikationsdatum
01.12.2018
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 12/2018
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0197-x

Weitere Artikel der Ausgabe 12/2018

Journal of Iron and Steel Research International 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.