Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2021

01.01.2021 | STRENGTH AND PLASTICITY

Effect of Deformation Temperature on Formation of Ultrafine-Grained Structure in the Age-Hardenable Cu–Cr–Zr Alloy

verfasst von: A. I. Morozova, A. N. Belyakov, R. O. Kaibyshev

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The effect of the temperature of plastic deformation performed by equal channel angular pressing on the structure and physical and mechanical properties of the age-hardenable Cu–Cr–Zr alloy has been studied. Plastic deformation results in the formation of an ultrafine-grained structure in some regions with an average grain size smaller than 1 µm, a supersaturated solid solution decomposition, and the precipitation of disperse particles. The fraction of the supersaturated solid solution which is decomposed is shown to increase with increasing deformation temperature. The density of microshear bands, the dislocation density, and the fraction of high-angle boundaries and the ultrafine-grained structure increase with increasing volume fraction of disperse particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Y. Murashkin, I. Sabirov, X. Sauvage, and R. Z. Valiev, “Nanostructured Al and Cu alloys with superior strength and electrical conductivity,” J. Mater. Sci. 51 (1), 33–49 (2016).CrossRef M. Y. Murashkin, I. Sabirov, X. Sauvage, and R. Z. Valiev, “Nanostructured Al and Cu alloys with superior strength and electrical conductivity,” J. Mater. Sci. 51 (1), 33–49 (2016).CrossRef
2.
Zurück zum Zitat V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metalogr. 117, 74–82 (2016).CrossRef V. I. Zel’dovich, S. V. Dobatkin, N. Yu. Frolova, I. V. Khomskaya, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Met. Metalogr. 117, 74–82 (2016).CrossRef
3.
Zurück zum Zitat N. Liang, J. Liu, S. Lin, Y. Wang, J. T. Wang, Y. Zhao, and Y. Zhu, “A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability,” J. Alloys Compd. 735, 1389–1394 (2018).CrossRef N. Liang, J. Liu, S. Lin, Y. Wang, J. T. Wang, Y. Zhao, and Y. Zhu, “A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability,” J. Alloys Compd. 735, 1389–1394 (2018).CrossRef
4.
Zurück zum Zitat A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, and V. I. Kopylov, “Effect of chemical composition on structure and properties of ultrafine grained Cu–Cr–Zr alloys produced by equal-channel angular pressing,” Mater. Trans. 45 (7), 2187–2191 (2004).CrossRef A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, and V. I. Kopylov, “Effect of chemical composition on structure and properties of ultrafine grained Cu–Cr–Zr alloys produced by equal-channel angular pressing,” Mater. Trans. 45 (7), 2187–2191 (2004).CrossRef
5.
Zurück zum Zitat N. V. Melekhin and V. N. Chuvil’deev, “Influence of equal-channel-angular pressing on the particle precipitation in the Cu–Cr–Zr alloy,” Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, No. 5, 55–61 (2011). N. V. Melekhin and V. N. Chuvil’deev, “Influence of equal-channel-angular pressing on the particle precipitation in the Cu–Cr–Zr alloy,” Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, No. 5, 55–61 (2011).
6.
Zurück zum Zitat A. Chbihi, X. Sauvage, and D. Blavette, “Atomic scale investigation of Cr precipitation in copper,” Acta Mater. 60 (11), 4575–4585 (2012).CrossRef A. Chbihi, X. Sauvage, and D. Blavette, “Atomic scale investigation of Cr precipitation in copper,” Acta Mater. 60 (11), 4575–4585 (2012).CrossRef
7.
Zurück zum Zitat H. Fuxiang, M. Jusheng, N. Honglong, G. Zhiting, L. Chao, G. Shumei, Y. Xuetao, W. Tao, L. Hong, and L. Huafen, “Analysis of phases in a Cu–Cr–Zr alloy,” Scr. Mater. 48 (1), 97–102 (2003).CrossRef H. Fuxiang, M. Jusheng, N. Honglong, G. Zhiting, L. Chao, G. Shumei, Y. Xuetao, W. Tao, L. Hong, and L. Huafen, “Analysis of phases in a Cu–Cr–Zr alloy,” Scr. Mater. 48 (1), 97–102 (2003).CrossRef
8.
Zurück zum Zitat D. V. Shangina, V. F. Terent’ev, D. V. Prosvirnin, O. V. Antonova, N. R. Bochvar, M. V. Gorshenkov, G. I. Raab, and S. V. Dobatkin, “Mechanical properties, fatigue life, and electrical conductivity of Cu–Cr–Hf alloy after equal channel angular pressing,” Adv. Eng. Mater. 20 (1), 1700536 (2018).CrossRef D. V. Shangina, V. F. Terent’ev, D. V. Prosvirnin, O. V. Antonova, N. R. Bochvar, M. V. Gorshenkov, G. I. Raab, and S. V. Dobatkin, “Mechanical properties, fatigue life, and electrical conductivity of Cu–Cr–Hf alloy after equal channel angular pressing,” Adv. Eng. Mater. 20 (1), 1700536 (2018).CrossRef
9.
Zurück zum Zitat A. Morozova, R. Mishnev, A. Belyakov, and R. Kaibyshev, “Microstructure and properties of fine grained Cu–Cr–Zr alloys after termo-mechanical treatments,” Rev. Adv. Mater. Sci. 54 (1), 56–92 (2018).CrossRef A. Morozova, R. Mishnev, A. Belyakov, and R. Kaibyshev, “Microstructure and properties of fine grained Cu–Cr–Zr alloys after termo-mechanical treatments,” Rev. Adv. Mater. Sci. 54 (1), 56–92 (2018).CrossRef
10.
Zurück zum Zitat R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015).CrossRef R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015).CrossRef
11.
Zurück zum Zitat M. Murayama, A. Belyakov, T. Hara, Y. Sakai, K. Tsuzaki, M. Okubo, M. Eto, and T. Kimura, “Development of a high-strength high-conductivity Cu–Ni–P alloy. Part I: Characterization of precipitation products,” J. Electron. Mater. 35 (10), 1787–1792 (2006).CrossRef M. Murayama, A. Belyakov, T. Hara, Y. Sakai, K. Tsuzaki, M. Okubo, M. Eto, and T. Kimura, “Development of a high-strength high-conductivity Cu–Ni–P alloy. Part I: Characterization of precipitation products,” J. Electron. Mater. 35 (10), 1787–1792 (2006).CrossRef
12.
Zurück zum Zitat A. P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, and R. Kaibyshev, “Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation,” Mater. Sci. Eng. A 654, 131–142 (2016).CrossRef A. P. Zhilyaev, I. Shakhova, A. Morozova, A. Belyakov, and R. Kaibyshev, “Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation,” Mater. Sci. Eng. A 654, 131–142 (2016).CrossRef
13.
Zurück zum Zitat F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012).
14.
Zurück zum Zitat Y. Zhang, A. A. Volinsky, H. T. Tran, Z. Chai, P. Liu, B. Tian, and Y. Liu, “Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy,” Mater. Sci. Eng., A 650, 248–253 (2016).CrossRef Y. Zhang, A. A. Volinsky, H. T. Tran, Z. Chai, P. Liu, B. Tian, and Y. Liu, “Aging behavior and precipitates analysis of the Cu–Cr–Zr–Ce alloy,” Mater. Sci. Eng., A 650, 248–253 (2016).CrossRef
15.
Zurück zum Zitat H. I. Aaronson, K. R. Kinsman, and K. C. Russell, “The volume free energy change associated with precipitate nucleation,” Scr. Metall. 4 (2), 101–106 (1970).CrossRef H. I. Aaronson, K. R. Kinsman, and K. C. Russell, “The volume free energy change associated with precipitate nucleation,” Scr. Metall. 4 (2), 101–106 (1970).CrossRef
Metadaten
Titel
Effect of Deformation Temperature on Formation of Ultrafine-Grained Structure in the Age-Hardenable Cu–Cr–Zr Alloy
verfasst von
A. I. Morozova
A. N. Belyakov
R. O. Kaibyshev
Publikationsdatum
01.01.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21010087

Weitere Artikel der Ausgabe 1/2021

Physics of Metals and Metallography 1/2021 Zur Ausgabe