Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2019

01.07.2019 | ELECTRICAL AND MAGNETIC PROPERTIES

High-Sensitive Sensing Elements Based on Spin Valves with Antiferromagnetic Interlayer Coupling

verfasst von: L. I. Naumova, M. A. Milyaev, R. S. Zavornitsin, A. Yu. Pavlova, I. K. Maksimova, T. P. Krinitsina, T. A. Chernyshova, V. V. Proglyado, V. V. Ustinov

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spin valves Ta/(Ni80Fe20)60Cr40/Co70Fe20Ni10/Cu/Co70Fe20Ni10/Ru/Co70Fe20Ni10/Fe50Mn50/Ta have been prepared by magnetron sputtering. It was found that the shift of low-field hysteresis loop with respect to H = 0 oscillates as the copper layer thickness changes. Structural studies showed the high perfection of the layer microstructure. Films of spin valves with the copper layer thickness corresponding to the second antiferromagnetic RKKI interaction maximum have been synthesized. They exhibit zero shift of low-field hysteresis loop and are characterized by high magnetoresistance effect. Sensing elements in the form of meanders prepared using the films demonstrate the almost anhysteretical field dependence of magnetoresistance and a magnetoresistive sensitivity of 0.5%/Oe.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Cardoso, D. C. Leitao, T. M. Dias, J. Valadeiro, M. D. Silva, A. Chicharo, V. Silverio, J. Gaspar, and P. P. Freitas, “Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications,” J. Phys. D: Appl. Phys. 50, 213001(2017).CrossRef S. Cardoso, D. C. Leitao, T. M. Dias, J. Valadeiro, M. D. Silva, A. Chicharo, V. Silverio, J. Gaspar, and P. P. Freitas, “Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications,” J. Phys. D: Appl. Phys. 50, 213001(2017).CrossRef
2.
Zurück zum Zitat J. Valadeiro, M. Silva, S. Cardoso, M. Martins, J. Gaspar, P. P. Freitas, and A. M. Sebastiao, “Microneedles with integrated magnetoresistive sensors: A precision tool in biomedical instrumentation,” In Proc.of the 2017 IEEE Sensors Applications Symposium (SAS), 13–15 March 2017 (Glassboro, NJ, USA, 2017). J. Valadeiro, M. Silva, S. Cardoso, M. Martins, J. Gaspar, P. P. Freitas, and A. M. Sebastiao, “Microneedles with integrated magnetoresistive sensors: A precision tool in biomedical instrumentation,” In Proc.of the 2017 IEEE Sensors Applications Symposium (SAS), 13–15 March 2017 (Glassboro, NJ, USA, 2017).
3.
Zurück zum Zitat S. Hui-Min, H. Liang, and F. Xin, “Integrated giant magnetoresistance technology for approachable weak biomagnetic signal detections,” Sensors 50, 148 (22 pp) (2018). S. Hui-Min, H. Liang, and F. Xin, “Integrated giant magnetoresistance technology for approachable weak biomagnetic signal detections,” Sensors 50, 148 (22 pp) (2018).
4.
Zurück zum Zitat B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhout, and D. Maui, “Giant magnetoresistance in soft ferromagnetic multilayers,” Phys. Rev. B 43, 1297–1300 (1991).CrossRef B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhout, and D. Maui, “Giant magnetoresistance in soft ferromagnetic multilayers,” Phys. Rev. B 43, 1297–1300 (1991).CrossRef
5.
Zurück zum Zitat Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C. Y. Hung, M. Zhao, and S. Tran, “Spin-valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/FeMn,” J. Appl. Phys. 85, 5528–5530 (1999).CrossRef Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C. Y. Hung, M. Zhao, and S. Tran, “Spin-valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/FeMn,” J. Appl. Phys. 85, 5528–5530 (1999).CrossRef
6.
Zurück zum Zitat Y. F. Li, R. H. Yu, D. V. Dimitrov, and J. Q. Xiao, “Memory effect and temperature behavior in spin valves with and without antiferromagnet subsystems,” J. Appl. Phys. 80, 5692–5695 (1999).CrossRef Y. F. Li, R. H. Yu, D. V. Dimitrov, and J. Q. Xiao, “Memory effect and temperature behavior in spin valves with and without antiferromagnet subsystems,” J. Appl. Phys. 80, 5692–5695 (1999).CrossRef
7.
Zurück zum Zitat H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey, “The spin flop of synthetic antiferromagnetic films,” J. Appl. Phys. 87, 5055–5057 (2000).CrossRef H. C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey, “The spin flop of synthetic antiferromagnetic films,” J. Appl. Phys. 87, 5055–5057 (2000).CrossRef
8.
Zurück zum Zitat R. S. Beach, J. McCord, P. Webb, and D. Mauri, “Orthogonal pinning of two ferromagnetic layers in a synthetic spin valve,” Appl. Phys. Lett. 80, 4576–4578 (2002).CrossRef R. S. Beach, J. McCord, P. Webb, and D. Mauri, “Orthogonal pinning of two ferromagnetic layers in a synthetic spin valve,” Appl. Phys. Lett. 80, 4576–4578 (2002).CrossRef
9.
Zurück zum Zitat M. Milyaev, L. Naumova, T. Chernyshova, V. Proglyado, I. Kamensky, and V. Ustinov, “Spin-flop in synthetic antiferromagnet and anhysteretic magnetic reversal in FeMn-based spin valves,” IEEE Trans. Magn. 52, 2301104 (2016).CrossRef M. Milyaev, L. Naumova, T. Chernyshova, V. Proglyado, I. Kamensky, and V. Ustinov, “Spin-flop in synthetic antiferromagnet and anhysteretic magnetic reversal in FeMn-based spin valves,” IEEE Trans. Magn. 52, 2301104 (2016).CrossRef
10.
Zurück zum Zitat H. Kanai, K. Yamada, K. Aoshima, Y. Ohtsuka, J. Kane, M. Kanamine, J. Toda, and Y. Mizoshita, “Spin-valve read heads with NiFe/Co90Fe10 layers for 5 Gbit/in2 density recording,” IEEE Trans. Magn. 32, 3368–3373 (1996).CrossRef H. Kanai, K. Yamada, K. Aoshima, Y. Ohtsuka, J. Kane, M. Kanamine, J. Toda, and Y. Mizoshita, “Spin-valve read heads with NiFe/Co90Fe10 layers for 5 Gbit/in2 density recording,” IEEE Trans. Magn. 32, 3368–3373 (1996).CrossRef
11.
Zurück zum Zitat CoP. Coelho, D. C. Leitao, J. Antunes, S. Cardaso, and P. P. Freitas, “Spin valve devices with synthetic-ferrimagnet free-layer displaying enhanced sensitivity for nanometric sensors,” IEEE Trans. Magn. 50, 44016041–44016044 (2014). CoP. Coelho, D. C. Leitao, J. Antunes, S. Cardaso, and P. P. Freitas, “Spin valve devices with synthetic-ferrimagnet free-layer displaying enhanced sensitivity for nanometric sensors,” IEEE Trans. Magn. 50, 44016041–44016044 (2014).
12.
Zurück zum Zitat T. A. Chernyshova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, N. S. Bannikova, I. K. Maksimova, I. A. Petrov, and V. V. Ustinov, “Magnetoresistive sensitivity and uniaxial anisotropy of spin-valve microstrips with a synthetic antiferromagnet,” Phys. Met. Metallogr. 118, 415–420 (2017).CrossRef T. A. Chernyshova, M. A. Milyaev, L. I. Naumova, V. V. Proglyado, N. S. Bannikova, I. K. Maksimova, I. A. Petrov, and V. V. Ustinov, “Magnetoresistive sensitivity and uniaxial anisotropy of spin-valve microstrips with a synthetic antiferromagnet,” Phys. Met. Metallogr. 118, 415–420 (2017).CrossRef
13.
Zurück zum Zitat S. Tumanski, Thin Film Magnetoresistive Sensors (IOP Publishing Ltd., 2001).CrossRef S. Tumanski, Thin Film Magnetoresistive Sensors (IOP Publishing Ltd., 2001).CrossRef
14.
Zurück zum Zitat V. Silva, C. Leitao, J. Valadeiro, J. Amaral, P. Freitas, and S. Cardoso, “Linearization strategies for high sensitivity magnetoresistive sensors,” Eur. Phys. J. Appl. Phys. 72, 10601 (2015).CrossRef V. Silva, C. Leitao, J. Valadeiro, J. Amaral, P. Freitas, and S. Cardoso, “Linearization strategies for high sensitivity magnetoresistive sensors,” Eur. Phys. J. Appl. Phys. 72, 10601 (2015).CrossRef
15.
Zurück zum Zitat J. C. S. Kools, “Exchange-biased spin-valves for magnetic storage,” IEEE Trans. Magn. 32, 3165–3184 (1996).CrossRef J. C. S. Kools, “Exchange-biased spin-valves for magnetic storage,” IEEE Trans. Magn. 32, 3165–3184 (1996).CrossRef
16.
Zurück zum Zitat H. Fukuzawa, H. Iwasaki, K. Koi, and M. Sahashi, “Soft magnetic characteristics of an ultrathin CoFeNi free layer in spin-valve films,” J. Magn. Magn. Mater. 298, 65–71 (2006).CrossRef H. Fukuzawa, H. Iwasaki, K. Koi, and M. Sahashi, “Soft magnetic characteristics of an ultrathin CoFeNi free layer in spin-valve films,” J. Magn. Magn. Mater. 298, 65–71 (2006).CrossRef
17.
Zurück zum Zitat Y. Sugita, Y. Kawawake, M. Satomi, and H. Sakakima, “Thermal stability of PtMn based synthetic spin valves using thin oxide layer,” J. Appl. Phys. 89, 6919–6921 (2001).CrossRef Y. Sugita, Y. Kawawake, M. Satomi, and H. Sakakima, “Thermal stability of PtMn based synthetic spin valves using thin oxide layer,” J. Appl. Phys. 89, 6919–6921 (2001).CrossRef
18.
Zurück zum Zitat N. S. Bannikova, M. A. Milyaev, L. I. Naumova, E. I. Patrakov, V. V. Proglyado, I. Yu. Kamenskii, M. V. Ryabukhina and V. V. Ustinov, “Giant magnetoresistance and hysteresis phenomena in CoFe/Cu superlattices with highly perfect crystallographic texture,” Phys. Met. Metallogr. 119, 1073–1078 (2018).CrossRef N. S. Bannikova, M. A. Milyaev, L. I. Naumova, E. I. Patrakov, V. V. Proglyado, I. Yu. Kamenskii, M. V. Ryabukhina and V. V. Ustinov, “Giant magnetoresistance and hysteresis phenomena in CoFe/Cu superlattices with highly perfect crystallographic texture,” Phys. Met. Metallogr. 119, 1073–1078 (2018).CrossRef
19.
Zurück zum Zitat N. S. Bannikova, M. A. Milyaev, L. I. Naumova, T. P. Krinitsina, E. I. Patrakov, V. V. Proglyado, T. A. Chernyshova, and V. V. Ustinov “NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis,” Phys. Solid State 58, 2011–2017 (2016).CrossRef N. S. Bannikova, M. A. Milyaev, L. I. Naumova, T. P. Krinitsina, E. I. Patrakov, V. V. Proglyado, T. A. Chernyshova, and V. V. Ustinov “NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis,” Phys. Solid State 58, 2011–2017 (2016).CrossRef
20.
Zurück zum Zitat R. M. Öksüzoglu, U. Sarac, M. Yıldırım, and H. Çınar, “Characterization of microstructural and morphological properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta multilayer system,” J. Mater. Sci. Technol. 30, 359–364 (2014).CrossRef R. M. Öksüzoglu, U. Sarac, M. Yıldırım, and H. Çınar, “Characterization of microstructural and morphological properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta multilayer system,” J. Mater. Sci. Technol. 30, 359–364 (2014).CrossRef
21.
Zurück zum Zitat A. V. Svalov, A. N. Sorokin, P. A. Savin, A. García-Arribas, A. Fernández, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Co/Cu/Co pseudo spin-valve system prepared by magnetron sputtering with different argon pressure,” Key Eng. Mater. 644, 211–214 (2015).CrossRef A. V. Svalov, A. N. Sorokin, P. A. Savin, A. García-Arribas, A. Fernández, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Co/Cu/Co pseudo spin-valve system prepared by magnetron sputtering with different argon pressure,” Key Eng. Mater. 644, 211–214 (2015).CrossRef
22.
Zurück zum Zitat M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, N. A. Kulesh, E. I. Patrakov, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef M. A. Milyaev, L. I. Naumova, T. A. Chernyshova, V. V. Proglyado, N. A. Kulesh, E. I. Patrakov, I. Yu. Kamenskii, and V. V. Ustinov, “Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves,” Phys. Met. Metallogr. 117, 1179–1184 (2016).CrossRef
23.
Zurück zum Zitat T. Chernyshova, L. Naumova, A. Pavlova, I. Maksimova, M. Milyaev, V. Proglyado, E. Patrakov, and V. Ustinov, “Anhysteretic magnetic reversal of meander-shaped spin valve with synthetic antiferromagnet,” Sens. Actuators, A 285, 73–79 (2019).CrossRef T. Chernyshova, L. Naumova, A. Pavlova, I. Maksimova, M. Milyaev, V. Proglyado, E. Patrakov, and V. Ustinov, “Anhysteretic magnetic reversal of meander-shaped spin valve with synthetic antiferromagnet,” Sens. Actuators, A 285, 73–79 (2019).CrossRef
Metadaten
Titel
High-Sensitive Sensing Elements Based on Spin Valves with Antiferromagnetic Interlayer Coupling
verfasst von
L. I. Naumova
M. A. Milyaev
R. S. Zavornitsin
A. Yu. Pavlova
I. K. Maksimova
T. P. Krinitsina
T. A. Chernyshova
V. V. Proglyado
V. V. Ustinov
Publikationsdatum
01.07.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X1907007X

Weitere Artikel der Ausgabe 7/2019

Physics of Metals and Metallography 7/2019 Zur Ausgabe