Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2020

01.04.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Study of Phase Transitions in the Antiferromagnetic Heisenberg Model on a Body-Centered Cubic Lattice by Monte Carlo Simulation

verfasst von: A. K. Murtazaev, F. A. Kassan-Ogly, M. K. Ramazanov, K. Sh. Murtazaev

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—Phase transitions in the antiferromagnetic Heisenberg model on the body-centered cubic lattice were studied using the replica algorithm of the Monte Carlo method, taking into account the interactions between the first and second neighbors. The investigations were performed for the ratio of the value of the exchange interactions between the nearest and second neighbors in the range 0.0 ≤ r ≤ 1.0. The phase diagram of critical temperature versus the value of interaction between the second neighbors was constructed. The region in the diagram where the transition from antiferromagnetic to paramagnetic phase is of the first order was discovered for the first time in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. S. Dotsenko, “Critical phenomena and quenched disorder,” Phys.-Usp. 38, 457–496 (1995).CrossRef V. S. Dotsenko, “Critical phenomena and quenched disorder,” Phys.-Usp. 38, 457–496 (1995).CrossRef
2.
Zurück zum Zitat S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys.-Usp. 49, 225–262 (2006).CrossRef S. E. Korshunov, “Phase transitions in two-dimensional systems with continuous degeneracy,” Phys.-Usp. 49, 225–262 (2006).CrossRef
3.
Zurück zum Zitat M. K. Ramazanov and A. K. Murtazaev, “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions,” JETP Lett. 101, 714–718 (2015).CrossRef M. K. Ramazanov and A. K. Murtazaev, “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions,” JETP Lett. 101, 714–718 (2015).CrossRef
4.
Zurück zum Zitat M. K. Ramazanov and A. K. Murtazaev, “Phase transitions in the antiferromagnetic layered Ising model on a cubic lattice,” JETP Lett. 103, 460–464 (2016).CrossRef M. K. Ramazanov and A. K. Murtazaev, “Phase transitions in the antiferromagnetic layered Ising model on a cubic lattice,” JETP Lett. 103, 460–464 (2016).CrossRef
5.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, and M. K. Badiev, “Phase transitions and critical phenomena in the antiferromagnetic Ising model on a layered triangular lattice,” Physica A 507, 210–218 (2018).CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. K. Badiev, “Phase transitions and critical phenomena in the antiferromagnetic Ising model on a layered triangular lattice,” Physica A 507, 210–218 (2018).CrossRef
6.
Zurück zum Zitat A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan-Ogly, and D. R. Kurbanova, “Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice with interactions between next-to-nearest neighbors,” J. Exp. Theor. Phys. 120, 110–114 (2015).CrossRef A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan-Ogly, and D. R. Kurbanova, “Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice with interactions between next-to-nearest neighbors,” J. Exp. Theor. Phys. 120, 110–114 (2015).CrossRef
7.
Zurück zum Zitat E. Dagotto and A. Moreo, “Phase diagram of the frustrated spin-1/2 Heisenberg antiferromagnet in 2 dimensions,” Phys. Rev. Lett. 63, 2148–2151 (1989).CrossRef E. Dagotto and A. Moreo, “Phase diagram of the frustrated spin-1/2 Heisenberg antiferromagnet in 2 dimensions,” Phys. Rev. Lett. 63, 2148–2151 (1989).CrossRef
8.
Zurück zum Zitat E. Manousakis, “The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides,” Rev. Mod. Phys. 63, 1–62 (1991).CrossRef E. Manousakis, “The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides,” Rev. Mod. Phys. 63, 1–62 (1991).CrossRef
9.
Zurück zum Zitat F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third-neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015).CrossRef F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, “Ising model on a square lattice with second-neighbor and third-neighbor interactions,” J. Magn. Magn. Mater. 384, 247–254 (2015).CrossRef
10.
Zurück zum Zitat F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 324, 3418–3421 (2012).CrossRef F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, “Influence of field on frustrations in low-dimensional magnets,” J. Magn. Magn. Mater. 324, 3418–3421 (2012).CrossRef
11.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Physica A 521, 543–550 (2019).CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Phase diagrams and ground-state structures of the Potts model on a triangular lattice,” Physica A 521, 543–550 (2019).CrossRef
12.
Zurück zum Zitat A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019).CrossRef A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice,” Mater. Lett. 236, 669–671 (2019).CrossRef
13.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Badiev, “Phase transitions and thermodynamic properties of antiferromagnetic Ising model with next-nearest-neighbor interactions on the Kagomé lattice,” Phase Trans. 91, 610–618 (2018).CrossRef M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, and M. K. Badiev, “Phase transitions and thermodynamic properties of antiferromagnetic Ising model with next-nearest-neighbor interactions on the Kagomé lattice,” Phase Trans. 91, 610–618 (2018).CrossRef
14.
Zurück zum Zitat M. K. Ramazanov and A. K. Murtazaev, “Investigation of critical phenomena of the frustrated Ising model on a cubic lattice with next-nearest-neighbor intralayer interactions by the Monte Carlo method,” Phase Trans. 91, 83–91 (2018).CrossRef M. K. Ramazanov and A. K. Murtazaev, “Investigation of critical phenomena of the frustrated Ising model on a cubic lattice with next-nearest-neighbor intralayer interactions by the Monte Carlo method,” Phase Trans. 91, 83–91 (2018).CrossRef
15.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, and M. K. Badiev, “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions,” Phys. B: Condens. Matter 476, 1–5 (2015).CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. K. Badiev, “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions,” Phys. B: Condens. Matter 476, 1–5 (2015).CrossRef
16.
Zurück zum Zitat M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Thermodynamic, critical properties and phase transitions of the Ising model on a square lattice with competing interactions,” Solid State Comm. 233, 35–40 (2016).CrossRef M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, “Thermodynamic, critical properties and phase transitions of the Ising model on a square lattice with competing interactions,” Solid State Comm. 233, 35–40 (2016).CrossRef
17.
Zurück zum Zitat A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers 60, 96–123 (2001).CrossRef A. Mitsutake, Y. Sugita, and Y. Okamoto, “Generalized-ensemble algorithms for molecular simulations of biopolymers,” Biopolymers 60, 96–123 (2001).CrossRef
18.
Zurück zum Zitat F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101 (2001).CrossRef F. Wang and D. P. Landau, “Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram,” Phys. Rev. E 64, 056101 (2001).CrossRef
19.
Zurück zum Zitat K. Binder and J. -Sh. Wang, “Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations,” J. Stat. Phys. 55, 87–126 (1989).CrossRef K. Binder and J. -Sh. Wang, “Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations,” J. Stat. Phys. 55, 87–126 (1989).CrossRef
20.
Zurück zum Zitat K. Binder and H. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, 1988).CrossRef K. Binder and H. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, 1988).CrossRef
21.
Zurück zum Zitat F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001).CrossRef F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,” Phys. Rev. Lett. 86, 2050–2053 (2001).CrossRef
22.
Zurück zum Zitat A. K. Murtazaev, M. A. Magomedov, and M. K. Rama-zanov, “Phase diagram and structure of the ground state of the antiferromagnetic Ising model on a body-centered cubic lattice,” JETP Lett. 107, 259–263 (2018).CrossRef A. K. Murtazaev, M. A. Magomedov, and M. K. Rama-zanov, “Phase diagram and structure of the ground state of the antiferromagnetic Ising model on a body-centered cubic lattice,” JETP Lett. 107, 259–263 (2018).CrossRef
23.
Zurück zum Zitat A. N. Ignatenko, A. A. Katanin, and V. Yu. Irkhin, “Strong fluctuations near the frustration point in cubic lattice ferromagnets with localized moments,” JETP Lett. 97, 209–213 (2013).CrossRef A. N. Ignatenko, A. A. Katanin, and V. Yu. Irkhin, “Strong fluctuations near the frustration point in cubic lattice ferromagnets with localized moments,” JETP Lett. 97, 209–213 (2013).CrossRef
24.
Zurück zum Zitat S. A. Brazovskii, I. E. Dzyaloshinskii, and B. G. Kukha-renko, “First-order magnetic phase transitions and fluctuations,” J. Exp. Theor. Phys. 43, 1178–1183 (1976). S. A. Brazovskii, I. E. Dzyaloshinskii, and B. G. Kukha-renko, “First-order magnetic phase transitions and fluctuations,” J. Exp. Theor. Phys. 43, 1178–1183 (1976).
25.
Zurück zum Zitat A. N. Ignatenko and V. Yu. Irkhin, “Frustrated Heisenberg antiferromagnets on cubic lattices: magnetic structures, exchange gaps, and non-conventional critical behaviour,” J. Siberian Federal Univ. Math. Phys. 9, 454–458 (2016).CrossRef A. N. Ignatenko and V. Yu. Irkhin, “Frustrated Heisenberg antiferromagnets on cubic lattices: magnetic structures, exchange gaps, and non-conventional critical behaviour,” J. Siberian Federal Univ. Math. Phys. 9, 454–458 (2016).CrossRef
26.
Zurück zum Zitat H. T. Diep and H. Kawamura, “First-order phase transition in the fcc Heisenberg antiferromagnet,” Phys. Rev. B 40, 7019–7022 (1989).CrossRef H. T. Diep and H. Kawamura, “First-order phase transition in the fcc Heisenberg antiferromagnet,” Phys. Rev. B 40, 7019–7022 (1989).CrossRef
27.
Zurück zum Zitat J. L. Alonso, A. Tarancon, H. G. Ballesteros, L. A. Fernandez, V. Martın-Mayor, and A. Sudupe Munoz, “Monte Carlo study of O(3) antiferromagnetic models in three dimensions,” Phys. Rev. B 53, 2537–2545 (1996).CrossRef J. L. Alonso, A. Tarancon, H. G. Ballesteros, L. A. Fernandez, V. Martın-Mayor, and A. Sudupe Munoz, “Monte Carlo study of O(3) antiferromagnetic models in three dimensions,” Phys. Rev. B 53, 2537–2545 (1996).CrossRef
Metadaten
Titel
Study of Phase Transitions in the Antiferromagnetic Heisenberg Model on a Body-Centered Cubic Lattice by Monte Carlo Simulation
verfasst von
A. K. Murtazaev
F. A. Kassan-Ogly
M. K. Ramazanov
K. Sh. Murtazaev
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040109

Weitere Artikel der Ausgabe 4/2020

Physics of Metals and Metallography 4/2020 Zur Ausgabe