Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2020

01.04.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Spin-Reorientation Transitions in Multiferroics with Cycloidal Spin Ordering

verfasst von: Z. V. Gareeva, L. A. Kalyakin, I. R. Kayumov, A. K. Zvezdin

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase transitions in multiferroics with spatially modulated structures as ground states are studied in this work. The key physical mechanisms needed to implement modulated states of various kinds (cycloidal and helicoidal magnetic phases) and the conditions of phase transitions within modulated states are discussed. The domain of physical parameters where the ground state of the spin cycloid becomes unstable is determined for single crystals and films of bismuth ferrite. It is demonstrated that the domains of existence and stability of spin cycloids differ. Analytical estimates of their boundaries are obtained. The behavior of the spin system in a (110) BiFeO3 film in the magnetic field is studied, and diagrams of the ground magnetic states are plotted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Tokura, “Multiferroics as quantum electromagnets,” Science 312, 1481–1482 (2006).CrossRef Y. Tokura, “Multiferroics as quantum electromagnets,” Science 312, 1481–1482 (2006).CrossRef
2.
Zurück zum Zitat A. K. Zvezdin and A. P. Pyatakov, “Phase transitions and the giant magnetoelectric effect in multiferroics,” Phys.–Usp. 47, 416–421 (2004).CrossRef A. K. Zvezdin and A. P. Pyatakov, “Phase transitions and the giant magnetoelectric effect in multiferroics,” Phys.–Usp. 47, 416–421 (2004).CrossRef
3.
Zurück zum Zitat M. Mochizuki and N. Furukawa, “Microscopic model and phase diagrams of the multiferroic perovskite manganites,” Phys. Rev. B 80, 134416 (2009).CrossRef M. Mochizuki and N. Furukawa, “Microscopic model and phase diagrams of the multiferroic perovskite manganites,” Phys. Rev. B 80, 134416 (2009).CrossRef
4.
Zurück zum Zitat J. G. Park, M. D. Le, J. Jeong, and S. Lee, “Structure and spin dynamics of multiferroic BiFeO3,” J. Phys.: Condens. Matter. 26, 433202 (2014). J. G. Park, M. D. Le, J. Jeong, and S. Lee, “Structure and spin dynamics of multiferroic BiFeO3,” J. Phys.: Condens. Matter. 26, 433202 (2014).
5.
Zurück zum Zitat X. X. Shi, X. Q. Liu, and X. M. Chen, “Readdressing of magnetoelectric effect in bulk BiFeO3,” Adv. Funct. Mater. 27, 1604037 (2017).CrossRef X. X. Shi, X. Q. Liu, and X. M. Chen, “Readdressing of magnetoelectric effect in bulk BiFeO3,” Adv. Funct. Mater. 27, 1604037 (2017).CrossRef
6.
Zurück zum Zitat D. Lebeugle, D. Colson, A. Forget, M. Vire, A. M. Bataille, and A. Gukasov, “Electric-field-induced spin flop in BiFeO3 single crystals at room temperature,” Phys. Rev. Lett. 100, 227602 (2008).CrossRef D. Lebeugle, D. Colson, A. Forget, M. Vire, A. M. Bataille, and A. Gukasov, “Electric-field-induced spin flop in BiFeO3 single crystals at room temperature,” Phys. Rev. Lett. 100, 227602 (2008).CrossRef
7.
Zurück zum Zitat A. Siemens, Y. Zhang, J. Hagemeister, E. Y. Vedmedenko, and R. Wiesendanger, “Minimal radius of magnetic skyrmions: statics and dynamics,” New J. Phys. 18, 045021 (2016).CrossRef A. Siemens, Y. Zhang, J. Hagemeister, E. Y. Vedmedenko, and R. Wiesendanger, “Minimal radius of magnetic skyrmions: statics and dynamics,” New J. Phys. 18, 045021 (2016).CrossRef
8.
Zurück zum Zitat I. Sosnowska, T. Neumaier, and E. Steichele, “Spiral magnetic ordering in bismuth ferrite,” J. Phys. C: Solid State Phys. 15, 4835–4846 (1982).CrossRef I. Sosnowska, T. Neumaier, and E. Steichele, “Spiral magnetic ordering in bismuth ferrite,” J. Phys. C: Solid State Phys. 15, 4835–4846 (1982).CrossRef
9.
Zurück zum Zitat I. M. Sosnovska, “Spatially modulated spin structure (SMSS) in BiFeO3—30 years later,” J. Phys.: Condens. Matter. 28, 421002 (2016). I. M. Sosnovska, “Spatially modulated spin structure (SMSS) in BiFeO3—30 years later,” J. Phys.: Condens. Matter. 28, 421002 (2016).
10.
Zurück zum Zitat I. Sosnowska and A. Zvezdin, “Origin of the long period magnetic ordering in BiFeO3,” J. Magn. Magn. Mater. 140, 167–168 (1995).CrossRef I. Sosnowska and A. Zvezdin, “Origin of the long period magnetic ordering in BiFeO3,” J. Magn. Magn. Mater. 140, 167–168 (1995).CrossRef
11.
Zurück zum Zitat A. Sparavigna, A. Strigazzi, and A. K. Zvezdin, “Electric-field effects on the spin-density wave in magnetic ferroelectrics,” Phys. Rev. B 50, 2953–2957 (1994).CrossRef A. Sparavigna, A. Strigazzi, and A. K. Zvezdin, “Electric-field effects on the spin-density wave in magnetic ferroelectrics,” Phys. Rev. B 50, 2953–2957 (1994).CrossRef
12.
Zurück zum Zitat A. V. Zalessky, A. A. Frolov, T. A. Khimich, A. A. Bush, V. S. Pokatilov, and A. K. Zvezdin, “57Fe NMR study of spin-modulated magnetic structure in BiFeO3,” Europhys. Lett. 50, 547–551 (2000).CrossRef A. V. Zalessky, A. A. Frolov, T. A. Khimich, A. A. Bush, V. S. Pokatilov, and A. K. Zvezdin, “57Fe NMR study of spin-modulated magnetic structure in BiFeO3,” Europhys. Lett. 50, 547–551 (2000).CrossRef
13.
Zurück zum Zitat Y. F. Popov, A. K. Zvezdin, G. P. Vorob’ev, A. M. Kadomtseva, V. A. Murashev, and D. N. Rakov, “Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3,” JETP Lett. 57, 69–73 (1993). Y. F. Popov, A. K. Zvezdin, G. P. Vorob’ev, A. M. Kadomtseva, V. A. Murashev, and D. N. Rakov, “Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3,” JETP Lett. 57, 69–73 (1993).
14.
Zurück zum Zitat Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, “Magnetic-field-induced ferroelectric state in DyFeO3,” Phys. Rev. Lett. 101, 097205 (2008).CrossRef Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura, “Magnetic-field-induced ferroelectric state in DyFeO3,” Phys. Rev. Lett. 101, 097205 (2008).CrossRef
15.
Zurück zum Zitat Z. Gabbasova, M. Kuz’min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov, and I. Krynetsky, “Bi1 – xRxFeO3 (R = rare earth): A family of novel magnetoelectrics,” Phys. Lett. A 158, 491–498 (1991).CrossRef Z. Gabbasova, M. Kuz’min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov, and I. Krynetsky, “Bi1 – xRxFeO3 (R = rare earth): A family of novel magnetoelectrics,” Phys. Lett. A 158, 491–498 (1991).CrossRef
16.
Zurück zum Zitat R. Przenioslo, A. Palewicz, M. Regulski, I. Sosnowska, R. M. Ibberson, and K. S. Knight, “Does the modulated magnetic structure of BiFeO3 change at low temperatures?,” J. Phys.: Condens. Matter. 18, 2069–2075 (2006). R. Przenioslo, A. Palewicz, M. Regulski, I. Sosnowska, R. M. Ibberson, and K. S. Knight, “Does the modulated magnetic structure of BiFeO3 change at low temperatures?,” J. Phys.: Condens. Matter. 18, 2069–2075 (2006).
17.
Zurück zum Zitat F. Bai, J. Wang, M. Wuttig, J. Li, N. Wang, A. P. Pyatakov, and D. Viehland, “Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization,” Appl. Phys. Lett. 86, 032511 (2005).CrossRef F. Bai, J. Wang, M. Wuttig, J. Li, N. Wang, A. P. Pyatakov, and D. Viehland, “Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization,” Appl. Phys. Lett. 86, 032511 (2005).CrossRef
18.
Zurück zum Zitat R. S. Fishman, “Spin wave spectra and spatially modulated structures in BiFeO3,” Phys. Rev. B 87, 224419 (2013).CrossRef R. S. Fishman, “Spin wave spectra and spatially modulated structures in BiFeO3,” Phys. Rev. B 87, 224419 (2013).CrossRef
19.
Zurück zum Zitat D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, C. Toulouse, I. C. Infante, A. P. Pyatakov, S. Fusil, E. Jacque, C. Carretero, C. Deranlot, S. Lisenkov, D. Wang, J.-M. Breton, M. Cazayous, A. Sacuto, J. Juraszek, A. K. Zvezdin, L. Bellaiche, B. Dkhil, A. Barthelemy, and M. Bibes, “Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain,” Nat. Mater. 12, 641–646 (2013).CrossRef D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain, C. Toulouse, I. C. Infante, A. P. Pyatakov, S. Fusil, E. Jacque, C. Carretero, C. Deranlot, S. Lisenkov, D. Wang, J.-M. Breton, M. Cazayous, A. Sacuto, J. Juraszek, A. K. Zvezdin, L. Bellaiche, B. Dkhil, A. Barthelemy, and M. Bibes, “Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain,” Nat. Mater. 12, 641–646 (2013).CrossRef
20.
Zurück zum Zitat A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R. D. Johnson, R. Ruffer, A. F. Popkov, C. Carretero, P. Rovillain, J. -M. Breton, B. Dkhil, Y. Gallais, M.‑A. Neasson, A. Sacuto, P. Manuel, A. K. Zvezdin, A. Barthelemy, J. Juraszek, and M. Bebes, “Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3,” Adv. Mater. 29, 1602327 (2017).CrossRef A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R. D. Johnson, R. Ruffer, A. F. Popkov, C. Carretero, P. Rovillain, J. -M. Breton, B. Dkhil, Y. Gallais, M.‑A. Neasson, A. Sacuto, P. Manuel, A. K. Zvezdin, A. Barthelemy, J. Juraszek, and M. Bebes, “Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3,” Adv. Mater. 29, 1602327 (2017).CrossRef
21.
Zurück zum Zitat N. E. Kulagin, A. F. Popkov, and A. K. Zvezdin, “Spatially modulated antiferromagnetic structures in an easy-plane multiferroic,” Phys. Solid State 53, 970–977 (2011).CrossRef N. E. Kulagin, A. F. Popkov, and A. K. Zvezdin, “Spatially modulated antiferromagnetic structures in an easy-plane multiferroic,” Phys. Solid State 53, 970–977 (2011).CrossRef
22.
Zurück zum Zitat Z. V. Gareeva, A. F. Popkov, S. V. Soloviov, and A. K. Zvezdin, “Field-induced phase transitions and phase diagrams in BiFeO3-like multiferroics,” Phys. Rev. B 87, 214413 (2013).CrossRef Z. V. Gareeva, A. F. Popkov, S. V. Soloviov, and A. K. Zvezdin, “Field-induced phase transitions and phase diagrams in BiFeO3-like multiferroics,” Phys. Rev. B 87, 214413 (2013).CrossRef
23.
Zurück zum Zitat N. E. Kulagin, A. F. Popkov, S. V. Solov’ev, and A. K. Zvezdin, “Field-induced spin-modulated transitions in epitaxial (001) BiFeO3 films,” Phys. Solid State 61, 108–116 (2019).CrossRef N. E. Kulagin, A. F. Popkov, S. V. Solov’ev, and A. K. Zvezdin, “Field-induced spin-modulated transitions in epitaxial (001) BiFeO3 films,” Phys. Solid State 61, 108–116 (2019).CrossRef
24.
Zurück zum Zitat Z. V. Gareeva, K. A. Zvezdin, A. P. Pyatakov, and A. K. Zvezdin, “Novel type of spin cycloid in epitaxial bismuth ferrite films,” J. Magn. Magn. Mater. 469, 593–597 (2019).CrossRef Z. V. Gareeva, K. A. Zvezdin, A. P. Pyatakov, and A. K. Zvezdin, “Novel type of spin cycloid in epitaxial bismuth ferrite films,” J. Magn. Magn. Mater. 469, 593–597 (2019).CrossRef
25.
Zurück zum Zitat S. Burns, D. Sando, B. Xu, B. Dupe, L. Russell, G. Den, J. Seidel, L. Bellaiche, N. Valanoor, and C. Ulrich, “Expansion of the spin cycloid in multiferroic BiFeO3 thin films,” Quantum Mater. 4, 1–7 (2019).CrossRef S. Burns, D. Sando, B. Xu, B. Dupe, L. Russell, G. Den, J. Seidel, L. Bellaiche, N. Valanoor, and C. Ulrich, “Expansion of the spin cycloid in multiferroic BiFeO3 thin films,” Quantum Mater. 4, 1–7 (2019).CrossRef
26.
Zurück zum Zitat M. Tokunaga, M. Azuma, and Y. Shimakawa, “High- field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3,” J. Phys. Soc. Jpn. 79, 064713 (2010).CrossRef M. Tokunaga, M. Azuma, and Y. Shimakawa, “High- field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3,” J. Phys. Soc. Jpn. 79, 064713 (2010).CrossRef
27.
Zurück zum Zitat Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and the Symmetry of Crystals (Nauka, Moscow, 1984). Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and the Symmetry of Crystals (Nauka, Moscow, 1984).
28.
Zurück zum Zitat V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and their Application (Nauka, Moscow, 1972) [in Russian]. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and their Application (Nauka, Moscow, 1972) [in Russian].
Metadaten
Titel
Spin-Reorientation Transitions in Multiferroics with Cycloidal Spin Ordering
verfasst von
Z. V. Gareeva
L. A. Kalyakin
I. R. Kayumov
A. K. Zvezdin
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20040031

Weitere Artikel der Ausgabe 4/2020

Physics of Metals and Metallography 4/2020 Zur Ausgabe