Skip to main content
Erschienen in: Physics of Metals and Metallography 11/2020

01.11.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Simulation of Microstructure Evolution in Metal Materials under Hot Plastic Deformation and Heat Treatment

verfasst von: A. Yu. Churyumov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The development of modern computational techniques and equipment enables one to perform high-precision calculations of complex processes for industry, including metallurgy. This review has classified the basic physical and mathematical models of structure formation during heat and deformation treatment. The Kocks–Mecking–Estrin model describing the dislocation structure at the initial stage of hot plastic deformation has been analyzed. The models of dynamic, metadynamic, and static recrystallization kinetics based on the Johnson–Mehl–Avrami–Kolmogorov equation have been considered. The models of the kinetics of phase transformation upon heating and cooling of steel have been reviewed. The Kampmann–Wagner model that describes the decomposition of supersaturated solid solution during the aging of aluminum alloys has also been considered. The main computational techniques to calculate microstructural evolution, such as the cellular automaton, Monte Carlo, and multiphase-field techniques have been considered. They exhibit high accuracy when calculating recrystallization processes and phase transformations. The systematization of the existing models that describe structural evolution has revealed the possibility to develop complex models for the comprehensive calculation of full cycles to process metal materials by heating and deformation. These models can be used for the optimization and development of new processing techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Shen, S. L. Semiatin, and R. Shivpuri, “Modeling microstructural development during the forging of Waspaloy,” Metall. Mater. Trans. A 26, 1795–1803 (1995).CrossRef G. Shen, S. L. Semiatin, and R. Shivpuri, “Modeling microstructural development during the forging of Waspaloy,” Metall. Mater. Trans. A 26, 1795–1803 (1995).CrossRef
2.
Zurück zum Zitat Q. M. Guo, D. F. Li, and S. L. Guo, “Microstructural models of dynamic recrystallization in hot-deformed inconel 625 superalloy,” Mater. Manuf. Process. 27, 990–995 (2012).CrossRef Q. M. Guo, D. F. Li, and S. L. Guo, “Microstructural models of dynamic recrystallization in hot-deformed inconel 625 superalloy,” Mater. Manuf. Process. 27, 990–995 (2012).CrossRef
3.
Zurück zum Zitat M. G. Mecozzi, C. Bos, and J. Sietsma, “A mixed-mode model for the ferrite-to-austenite transformation in a ferrite/pearlite microstructure,” Acta Mater. 88, 302–313 (2015).CrossRef M. G. Mecozzi, C. Bos, and J. Sietsma, “A mixed-mode model for the ferrite-to-austenite transformation in a ferrite/pearlite microstructure,” Acta Mater. 88, 302–313 (2015).CrossRef
4.
Zurück zum Zitat E. Schoof, D. Schneider, N. Streichhan, T. Mittnacht, M. Selzer, and B. Nestler, “Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure,” Int. J. Solids Struct. 134, 181–194 (2018).CrossRef E. Schoof, D. Schneider, N. Streichhan, T. Mittnacht, M. Selzer, and B. Nestler, “Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure,” Int. J. Solids Struct. 134, 181–194 (2018).CrossRef
5.
Zurück zum Zitat Z. Li, Z. Wen, F. Su, R. Zhang, and Z. Zhou, “Modeling research on pearlite-to-austenite transformation in hypereutectoid steel containing Cr,” J. Alloys Compd. 727, 1050–1056 (2017).CrossRef Z. Li, Z. Wen, F. Su, R. Zhang, and Z. Zhou, “Modeling research on pearlite-to-austenite transformation in hypereutectoid steel containing Cr,” J. Alloys Compd. 727, 1050–1056 (2017).CrossRef
6.
Zurück zum Zitat P. Hippchen, A. Lipp, H. Grass, P. Craighero, M. Fleischer, and M. Merklein, “Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties,” J. Mater. Process. Technol. 228, 59–67 (2016).CrossRef P. Hippchen, A. Lipp, H. Grass, P. Craighero, M. Fleischer, and M. Merklein, “Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties,” J. Mater. Process. Technol. 228, 59–67 (2016).CrossRef
7.
Zurück zum Zitat F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, “Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation,” Mater. Des. 55, 560–573 (2014).CrossRef F. Yin, L. Hua, H. Mao, X. Han, D. Qian, and R. Zhang, “Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation,” Mater. Des. 55, 560–573 (2014).CrossRef
8.
Zurück zum Zitat Z. Jin, K. Li, X. Wu, and H. Dong, “Modelling of microstructure evolution during thermoplastic deformation of steel by a finite element method,” Mater. Today Proc. 2, 460–465 (2015).CrossRef Z. Jin, K. Li, X. Wu, and H. Dong, “Modelling of microstructure evolution during thermoplastic deformation of steel by a finite element method,” Mater. Today Proc. 2, 460–465 (2015).CrossRef
9.
Zurück zum Zitat A. M. Elwazri, E. Essadiqi, and S. Yue, “Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels,” ISIJ Int. 44, 744–752 (2004).CrossRef A. M. Elwazri, E. Essadiqi, and S. Yue, “Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels,” ISIJ Int. 44, 744–752 (2004).CrossRef
10.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Computer simulation for the prediction of phase composition and structure of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 1333–1337 (2018).CrossRef V. V. Popov and I. I. Gorbachev, “Computer simulation for the prediction of phase composition and structure of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 1333–1337 (2018).CrossRef
11.
Zurück zum Zitat I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Simulation of the evolution of carbonitride particles of complex composition upon hot deformation of a low-alloyed steel,” Phys. Met. Metallogr. 119, 770–779 (2018).CrossRef I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Simulation of the evolution of carbonitride particles of complex composition upon hot deformation of a low-alloyed steel,” Phys. Met. Metallogr. 119, 770–779 (2018).CrossRef
12.
Zurück zum Zitat Ł. Łach, J. Nowak, and D. Svyetlichnyy, “The evolution of the microstructure in AISI 304L stainless steel during the flat rolling–modeling by frontal cellular automata and verification,” J. Mater. Process. Technol. 255, 488–499 (2018).CrossRef Ł. Łach, J. Nowak, and D. Svyetlichnyy, “The evolution of the microstructure in AISI 304L stainless steel during the flat rolling–modeling by frontal cellular automata and verification,” J. Mater. Process. Technol. 255, 488–499 (2018).CrossRef
13.
Zurück zum Zitat M. S. Chen, W. Q. Yuan, Y. C. Lin, H. Bin. Li, and Z. H. Zou, “Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method,” Vacuum 146, 142–151 (2017).CrossRef M. S. Chen, W. Q. Yuan, Y. C. Lin, H. Bin. Li, and Z. H. Zou, “Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method,” Vacuum 146, 142–151 (2017).CrossRef
14.
Zurück zum Zitat Y. Estrin and H. Mecking, “A unified phenomenological description of work hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef Y. Estrin and H. Mecking, “A unified phenomenological description of work hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef
15.
Zurück zum Zitat U. F. Kocks and H. Mecking, “Physics and phenomenology of strain hardening: The FCC case,” Prog. Mater. Sci. 48, 171–273 (2003).CrossRef U. F. Kocks and H. Mecking, “Physics and phenomenology of strain hardening: The FCC case,” Prog. Mater. Sci. 48, 171–273 (2003).CrossRef
16.
Zurück zum Zitat H. Mecking and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metall. 29, 1865–1875 (1981).CrossRef H. Mecking and U. F. Kocks, “Kinetics of flow and strain-hardening,” Acta Metall. 29, 1865–1875 (1981).CrossRef
17.
Zurück zum Zitat E. Nes, K. Marthinsen, and Y. Brechet, “On the mechanisms of dynamic recovery,” Scr. Mater. 47, 607–611 (2002).CrossRef E. Nes, K. Marthinsen, and Y. Brechet, “On the mechanisms of dynamic recovery,” Scr. Mater. 47, 607–611 (2002).CrossRef
18.
Zurück zum Zitat E. Nes, “Modelling of work hardening and stress saturation in FCC metals,” Prog. Mater. Sci. 41, 129–193 (1997).CrossRef E. Nes, “Modelling of work hardening and stress saturation in FCC metals,” Prog. Mater. Sci. 41, 129–193 (1997).CrossRef
19.
Zurück zum Zitat E. Nes and K. Marthinsen, “Modeling the evolution in microstructure and properties during plastic deformation of f.c.c.-metals and alloys—An approach towards a unified model,” Mater. Sci. Eng., A 322, 176–193 (2002).CrossRef E. Nes and K. Marthinsen, “Modeling the evolution in microstructure and properties during plastic deformation of f.c.c.-metals and alloys—An approach towards a unified model,” Mater. Sci. Eng., A 322, 176–193 (2002).CrossRef
20.
Zurück zum Zitat J. G. Sevillano, “Flow stress and work hardening,” in Materials Science and Technology (Wiley, 2006), pp. 21–88. J. G. Sevillano, “Flow stress and work hardening,” in Materials Science and Technology (Wiley, 2006), pp. 21–88.
21.
Zurück zum Zitat Y. Zhang, Q. Fan, X. Zhang, Z. Zhou, Z. Xia, and Z. Qian, “Avrami kinetic-based constitutive relationship for armco-type pure iron in hot deformation,” Metals (Basel) 9, 365 (2019).CrossRef Y. Zhang, Q. Fan, X. Zhang, Z. Zhou, Z. Xia, and Z. Qian, “Avrami kinetic-based constitutive relationship for armco-type pure iron in hot deformation,” Metals (Basel) 9, 365 (2019).CrossRef
22.
Zurück zum Zitat J. Guo, M. Zhan, Y. Y. Wang, and P. F. Gao, “Unified modeling of work hardening and flow softening in two-phase titanium alloys considering microstructure evolution in thermomechanical processes,” J. Alloys Compd. 767, 34–45 (2018).CrossRef J. Guo, M. Zhan, Y. Y. Wang, and P. F. Gao, “Unified modeling of work hardening and flow softening in two-phase titanium alloys considering microstructure evolution in thermomechanical processes,” J. Alloys Compd. 767, 34–45 (2018).CrossRef
23.
Zurück zum Zitat N. Haghdadi, D. Martin, and P. Hodgson, “Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel,” Mater. Des. 106, 420–427 (2016).CrossRef N. Haghdadi, D. Martin, and P. Hodgson, “Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel,” Mater. Des. 106, 420–427 (2016).CrossRef
24.
Zurück zum Zitat W. A. Johnson and R. T. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. AIME 185, 416–442 (1939). W. A. Johnson and R. T. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. AIME 185, 416–442 (1939).
25.
Zurück zum Zitat M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).CrossRef M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).CrossRef
26.
Zurück zum Zitat A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Mat. 3, 355–359 (1937). A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Mat. 3, 355–359 (1937).
27.
Zurück zum Zitat H. J. McQueen, J. K. Solberg, N. Ryum, and E. Nes, “Evolution of flow stress in aluminium during ultra-high straining at elevated temperatures. Part II,” Philos. Mag. A 60, 473–485 (1989).CrossRef H. J. McQueen, J. K. Solberg, N. Ryum, and E. Nes, “Evolution of flow stress in aluminium during ultra-high straining at elevated temperatures. Part II,” Philos. Mag. A 60, 473–485 (1989).CrossRef
28.
Zurück zum Zitat J. K. Solberg, H. J. McQueen, N. Ryum, and E. Nes, “Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I,” Philos. Mag. A 60, 447–471 (1989).CrossRef J. K. Solberg, H. J. McQueen, N. Ryum, and E. Nes, “Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I,” Philos. Mag. A 60, 447–471 (1989).CrossRef
29.
Zurück zum Zitat T. Pettersen, B. Holmedal, and E. Nes, “Microstructure development during hot deformation of aluminum to large strains,” Metall. Mater. Trans. A 34, 2737–2744 (2003).CrossRef T. Pettersen, B. Holmedal, and E. Nes, “Microstructure development during hot deformation of aluminum to large strains,” Metall. Mater. Trans. A 34, 2737–2744 (2003).CrossRef
30.
Zurück zum Zitat I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557(2018).CrossRef I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloyed steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557(2018).CrossRef
31.
Zurück zum Zitat C. Zener, “Private communication to C.S. Smith,” Trans. Am. Inst. Min. Eng. 175, 15 (1949). C. Zener, “Private communication to C.S. Smith,” Trans. Am. Inst. Min. Eng. 175, 15 (1949).
32.
Zurück zum Zitat T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. R. Soc. London. Ser. A 294, 298–309 (1966).CrossRef T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. R. Soc. London. Ser. A 294, 298–309 (1966).CrossRef
33.
Zurück zum Zitat T. Nishizawa, I. Ohnuma, and K. Ishida, “Examination of the Zener relationship between grain size and particle dispersion,” Mater. Trans. JIM 38, 950–956 (1997).CrossRef T. Nishizawa, I. Ohnuma, and K. Ishida, “Examination of the Zener relationship between grain size and particle dispersion,” Mater. Trans. JIM 38, 950–956 (1997).CrossRef
34.
Zurück zum Zitat I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef I. I. Gorbachev, A. Y. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef
35.
Zurück zum Zitat A. Y. Churyumov, A. V. Mikhailovskaya, A. D. Kotov, A. I. Bazlov, and V. K. Portnoi, “Development of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al–Mg–Si system,” Phys. Met. Metallogr. 114, 272–278 (2013).CrossRef A. Y. Churyumov, A. V. Mikhailovskaya, A. D. Kotov, A. I. Bazlov, and V. K. Portnoi, “Development of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al–Mg–Si system,” Phys. Met. Metallogr. 114, 272–278 (2013).CrossRef
36.
Zurück zum Zitat E. I. Poliak and J. J. Jonas, “A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization,” Acta Mater. 44, 127–136 (1996).CrossRef E. I. Poliak and J. J. Jonas, “A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization,” Acta Mater. 44, 127–136 (1996).CrossRef
37.
Zurück zum Zitat M. Imran and M. Bambach, “A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients,” Procedia Eng. 207, 2107–2112 (2017).CrossRef M. Imran and M. Bambach, “A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients,” Procedia Eng. 207, 2107–2112 (2017).CrossRef
38.
Zurück zum Zitat W. P. Sun and E. B. Hawbolt, “Comparison between static and metadynamic recrystallization—An application to the hot rolling of steels,” ISIJ Int. 37, 1000–1009 (1997).CrossRef W. P. Sun and E. B. Hawbolt, “Comparison between static and metadynamic recrystallization—An application to the hot rolling of steels,” ISIJ Int. 37, 1000–1009 (1997).CrossRef
39.
Zurück zum Zitat M. G. Khomutov, A. Y. Churyumov, A. V. Pozdnyakov, A. G. Voitenko, and A. A. Chereshneva, “Simulation of the kinetics of dynamic recrystallization of alloy KhN55MBYu-VD during hot deformation,” Met. Sci. Heat Treat. 60, 606–610 (2019).CrossRef M. G. Khomutov, A. Y. Churyumov, A. V. Pozdnyakov, A. G. Voitenko, and A. A. Chereshneva, “Simulation of the kinetics of dynamic recrystallization of alloy KhN55MBYu-VD during hot deformation,” Met. Sci. Heat Treat. 60, 606–610 (2019).CrossRef
40.
Zurück zum Zitat S. Il. Kim, Y. Lee, and B. L. Jang, “Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling,” Mater. Sci. Eng., A 357, 235–239 (2003).CrossRef S. Il. Kim, Y. Lee, and B. L. Jang, “Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling,” Mater. Sci. Eng., A 357, 235–239 (2003).CrossRef
41.
Zurück zum Zitat A. Yu. Churyumov, A. V. Pozdniakov, T. A. Churyumova, and V. V. Cheverikin, “Hot deformation behavior of heat-resistant austenitic AISI 310S steel. I. Modeling of the flow stress and dynamic recrystallization,” Chernye Met. 8, 48–55 (2020). A. Yu. Churyumov, A. V. Pozdniakov, T. A. Churyumova, and V. V. Cheverikin, “Hot deformation behavior of heat-resistant austenitic AISI 310S steel. I. Modeling of the flow stress and dynamic recrystallization,” Chernye Met. 8, 48–55 (2020).
42.
Zurück zum Zitat V. Dub, A. Churyumov, A. Rodin, S. Belikov, and A. Barbolin, “Prediction of grain size evolution for low alloyed steels,” Results Phys. 8, 584–586 (2018).CrossRef V. Dub, A. Churyumov, A. Rodin, S. Belikov, and A. Barbolin, “Prediction of grain size evolution for low alloyed steels,” Results Phys. 8, 584–586 (2018).CrossRef
43.
Zurück zum Zitat Á. Zufía and J. M. Llanos, “Mathematical simulation and controlled cooling in an EDC conveyor of a wire rod rolling mill,” ISIJ Int. 41, 1282–1288 (2001).CrossRef Á. Zufía and J. M. Llanos, “Mathematical simulation and controlled cooling in an EDC conveyor of a wire rod rolling mill,” ISIJ Int. 41, 1282–1288 (2001).CrossRef
44.
Zurück zum Zitat P. A. Manohar, K. Lim, A. D. Rollett, and Y. Lee, “Computational exploration of microstructural evolution in a medium C-Mn steel and applications to rod mill,” ISIJ Int. 43, 1421–1430 (2003).CrossRef P. A. Manohar, K. Lim, A. D. Rollett, and Y. Lee, “Computational exploration of microstructural evolution in a medium C-Mn steel and applications to rod mill,” ISIJ Int. 43, 1421–1430 (2003).CrossRef
45.
Zurück zum Zitat M. Zhao, L. Huang, R. Zeng, H. Su, D. Wen, and J. Li, “In-situ observations and modeling of metadynamic recrystallization in 300M steel,” Mater. Charact. 159, 109997 (2020).CrossRef M. Zhao, L. Huang, R. Zeng, H. Su, D. Wen, and J. Li, “In-situ observations and modeling of metadynamic recrystallization in 300M steel,” Mater. Charact. 159, 109997 (2020).CrossRef
46.
Zurück zum Zitat D. G. He, Y. C. Lin, and L. H. Wang, “Microstructural variations and kinetic behaviors during metadynamic recrystallization in a nickel base superalloy with pre-precipitated δ phase,” Mater. Des. 165, 107584 (2019).CrossRef D. G. He, Y. C. Lin, and L. H. Wang, “Microstructural variations and kinetic behaviors during metadynamic recrystallization in a nickel base superalloy with pre-precipitated δ phase,” Mater. Des. 165, 107584 (2019).CrossRef
47.
Zurück zum Zitat D. Dong, F. Chen, and Z. Cui, “Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation,” J. Manuf. Process. 29, 18–28 (2017).CrossRef D. Dong, F. Chen, and Z. Cui, “Investigation on metadynamic recrystallization behavior in SA508-Ш steel during hot deformation,” J. Manuf. Process. 29, 18–28 (2017).CrossRef
48.
Zurück zum Zitat J. Majta, J. G. Lenard, and M. Pietrzyk, “Modelling the evolutlon of the microstructure of a Nb steel,” ISIJ Int. 36, 1094–1102 (1996). J. Majta, J. G. Lenard, and M. Pietrzyk, “Modelling the evolutlon of the microstructure of a Nb steel,” ISIJ Int. 36, 1094–1102 (1996).
49.
Zurück zum Zitat F. Chen, Z. Cui, D. Sui, and B. Fu, “Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part III: Metadynamic recrystallization,” Mater. Sci. Eng., A 540, 46–54 (2012).CrossRef F. Chen, Z. Cui, D. Sui, and B. Fu, “Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part III: Metadynamic recrystallization,” Mater. Sci. Eng., A 540, 46–54 (2012).CrossRef
50.
Zurück zum Zitat B. Ma, Y. Peng, B. Jia, and Y. F. Liu, “Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B,” J. Iron Steel Res. Int. 17, 61–66 (2010).CrossRef B. Ma, Y. Peng, B. Jia, and Y. F. Liu, “Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B,” J. Iron Steel Res. Int. 17, 61–66 (2010).CrossRef
51.
Zurück zum Zitat M. Zhao, L. Huang, R. Zeng, D. Wen, H. Su, and J. Li, “In-situ observations and modeling of static recrystallization in 300 M steel,” Mater. Sci. Eng., A 765, 138300 (2019).CrossRef M. Zhao, L. Huang, R. Zeng, D. Wen, H. Su, and J. Li, “In-situ observations and modeling of static recrystallization in 300 M steel,” Mater. Sci. Eng., A 765, 138300 (2019).CrossRef
52.
Zurück zum Zitat N. Nakata and M. Militzer, “Modelling of microstructure evolution during hot rolling of a 780 MPa high strength steel,” ISIJ Int. 45, 82–90 (2005).CrossRef N. Nakata and M. Militzer, “Modelling of microstructure evolution during hot rolling of a 780 MPa high strength steel,” ISIJ Int. 45, 82–90 (2005).CrossRef
53.
Zurück zum Zitat Y. Yogo, K. Tanaka, and K. Nakanishi, “In-situ observation of grain growth of steel at high temperature,” Mater. Trans. 50, 280–285 (2009).CrossRef Y. Yogo, K. Tanaka, and K. Nakanishi, “In-situ observation of grain growth of steel at high temperature,” Mater. Trans. 50, 280–285 (2009).CrossRef
54.
Zurück zum Zitat M. Dubois, M. Militzer, A. Moreau, and J. F. Bussière, “New technique for the quantitative real-time monitoring of austenite grain growth in steel,” Scr. Mater. 42, 867–874 (2000).CrossRef M. Dubois, M. Militzer, A. Moreau, and J. F. Bussière, “New technique for the quantitative real-time monitoring of austenite grain growth in steel,” Scr. Mater. 42, 867–874 (2000).CrossRef
55.
Zurück zum Zitat M. Toozandehjani, K. A. Matori, F. Ostovan, F. Mustapha, N. I. Zahari, and A. Oskoueian, “On the correlation between microstructural evolution and ultrasonic properties: a review,” J. Mater. Sci. 50, 2643–2665 (2015).CrossRef M. Toozandehjani, K. A. Matori, F. Ostovan, F. Mustapha, N. I. Zahari, and A. Oskoueian, “On the correlation between microstructural evolution and ultrasonic properties: a review,” J. Mater. Sci. 50, 2643–2665 (2015).CrossRef
56.
Zurück zum Zitat T. Garcin, J. H. Schmitt, and M. Militzer, “In-situ laser ultrasonic grain size measurement in superalloy INCONEL 718,” J. Alloys Compd. 670, 329–336 (2016).CrossRef T. Garcin, J. H. Schmitt, and M. Militzer, “In-situ laser ultrasonic grain size measurement in superalloy INCONEL 718,” J. Alloys Compd. 670, 329–336 (2016).CrossRef
57.
Zurück zum Zitat L. P. Karjalainen, “Stress relaxation method for investigation of softening kinetics in hot deformed steels,” Mater. Sci. Technol. 11, 557–565 (1995).CrossRef L. P. Karjalainen, “Stress relaxation method for investigation of softening kinetics in hot deformed steels,” Mater. Sci. Technol. 11, 557–565 (1995).CrossRef
58.
Zurück zum Zitat L. Cheng, H. Chang, B. Tang, H. Kou, and J. Li, “Characteristics of metadynamic recrystallization of a high Nb containing TiAl alloy,” Mater. Lett. 92, 430–432 (2013).CrossRef L. Cheng, H. Chang, B. Tang, H. Kou, and J. Li, “Characteristics of metadynamic recrystallization of a high Nb containing TiAl alloy,” Mater. Lett. 92, 430–432 (2013).CrossRef
59.
Zurück zum Zitat B. Hodgson and R. K. Gibbs, “A mathematical hot rolled C-Mn model to predict and microalloyed the mechanical properties ot steels,” ISIJ Int. 32, 1329–1338 (1992).CrossRef B. Hodgson and R. K. Gibbs, “A mathematical hot rolled C-Mn model to predict and microalloyed the mechanical properties ot steels,” ISIJ Int. 32, 1329–1338 (1992).CrossRef
60.
Zurück zum Zitat F. Liu, F. Sommer, C. Bos, and E. J. Mittemeijer, “Analysis of solid state phase transformation kinetics: Models and recipes,” Int. Mater. Rev. 52, 193–212 (2007).CrossRef F. Liu, F. Sommer, C. Bos, and E. J. Mittemeijer, “Analysis of solid state phase transformation kinetics: Models and recipes,” Int. Mater. Rev. 52, 193–212 (2007).CrossRef
61.
Zurück zum Zitat N. Li, J. Lin, D. S. Balint, and T. A. Dean, “Modelling of austenite formation during heating in boron steel hot stamping processes,” J. Mater. Process. Technol. 237, 394–401 (2016).CrossRef N. Li, J. Lin, D. S. Balint, and T. A. Dean, “Modelling of austenite formation during heating in boron steel hot stamping processes,” J. Mater. Process. Technol. 237, 394–401 (2016).CrossRef
62.
Zurück zum Zitat M. Bellavoine, M. Dumont, M. Dehmas, A. Stark, N. Schell, J. Drillet, V. Hébert, and P. Maugis, “Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling,” Mater. Charact. 154, 20–30 (2019).CrossRef M. Bellavoine, M. Dumont, M. Dehmas, A. Stark, N. Schell, J. Drillet, V. Hébert, and P. Maugis, “Ferrite recrystallization and austenite formation during annealing of cold-rolled advanced high-strength steels: In situ synchrotron X-ray diffraction and modeling,” Mater. Charact. 154, 20–30 (2019).CrossRef
63.
Zurück zum Zitat H. Li, K. Gai, L. He, C. Zhang, H. Cui, and M. Li, “Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson-Mehl-Avrami equation,” Mater. Des. 92, 731–741 (2016).CrossRef H. Li, K. Gai, L. He, C. Zhang, H. Cui, and M. Li, “Non-isothermal phase-transformation kinetics model for evaluating the austenization of 55CrMo steel based on Johnson-Mehl-Avrami equation,” Mater. Des. 92, 731–741 (2016).CrossRef
64.
Zurück zum Zitat M. P. De Andres and M. Carsí, “Hardenability: an alternative to the use of grain size as calculation parameter,” J. Mater. Sci. 22, 2707–2716 (1987).CrossRef M. P. De Andres and M. Carsí, “Hardenability: an alternative to the use of grain size as calculation parameter,” J. Mater. Sci. 22, 2707–2716 (1987).CrossRef
65.
Zurück zum Zitat I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels (Butterworth-Heinemann, 1988). I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels (Butterworth-Heinemann, 1988).
66.
Zurück zum Zitat S. Kamamoto, T. Nishimori, and S. Kinoshita, “Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts,” Mater. Sci. Technol. 1, 798–804 (1985).CrossRef S. Kamamoto, T. Nishimori, and S. Kinoshita, “Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts,” Mater. Sci. Technol. 1, 798–804 (1985).CrossRef
67.
Zurück zum Zitat S. J. Johns and H. K. D. H. Bhadeshia, “Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products,” Acta Metall. Mater. 45, 2911–2920 (1997).CrossRef S. J. Johns and H. K. D. H. Bhadeshia, “Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products,” Acta Metall. Mater. 45, 2911–2920 (1997).CrossRef
68.
Zurück zum Zitat C. Zener, “Kinetics of the decomposition of austenite,” Trans. AIME 167, 550–595 (1946). C. Zener, “Kinetics of the decomposition of austenite,” Trans. AIME 167, 550–595 (1946).
69.
Zurück zum Zitat M. Hillert, “The role of interfacial energy during solid-state phase transformations,” Jernkontorets Ann. 141, 757–789 (1957). M. Hillert, “The role of interfacial energy during solid-state phase transformations,” Jernkontorets Ann. 141, 757–789 (1957).
70.
Zurück zum Zitat M. Li Victor, D. V. Niebuhr, L. L. Meekisho, and D. G. Atteridge, “A computational model for the prediction of steel hardenability,” Metall. Mater. Trans. B 29, 661–672 (1998).CrossRef M. Li Victor, D. V. Niebuhr, L. L. Meekisho, and D. G. Atteridge, “A computational model for the prediction of steel hardenability,” Metall. Mater. Trans. B 29, 661–672 (1998).CrossRef
71.
Zurück zum Zitat D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metall. 7, 59–60 (1959).CrossRef D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metall. 7, 59–60 (1959).CrossRef
72.
Zurück zum Zitat S. J. Lee and Y. K. Lee, “Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics,” Acta Mater. 56, 1482–1490 (2008).CrossRef S. J. Lee and Y. K. Lee, “Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics,” Acta Mater. 56, 1482–1490 (2008).CrossRef
73.
Zurück zum Zitat H. Zhao, X. Hu, J. Cui, and Z. Xing, “Kinetic model for the phase transformation of high-strength steel under arbitrary cooling conditions,” Met. Mater. Int. 25, 381–395 (2019).CrossRef H. Zhao, X. Hu, J. Cui, and Z. Xing, “Kinetic model for the phase transformation of high-strength steel under arbitrary cooling conditions,” Met. Mater. Int. 25, 381–395 (2019).CrossRef
74.
Zurück zum Zitat G. Venturato, S. Bruschi, A. Ghiotti, and X. Chen, “Numerical modeling of the 22MnB5 formability at high temperature,” Procedia Manuf. 29, 428–434 (2019).CrossRef G. Venturato, S. Bruschi, A. Ghiotti, and X. Chen, “Numerical modeling of the 22MnB5 formability at high temperature,” Procedia Manuf. 29, 428–434 (2019).CrossRef
75.
Zurück zum Zitat S. J. Lee, E. J. Pavlina, and C. J. Van Tyne, “Kinetics modeling of austenite decomposition for an end-quenched 1045 steel,” Mater. Sci. Eng., A 527, 3186–3194 (2010).CrossRef S. J. Lee, E. J. Pavlina, and C. J. Van Tyne, “Kinetics modeling of austenite decomposition for an end-quenched 1045 steel,” Mater. Sci. Eng., A 527, 3186–3194 (2010).CrossRef
76.
Zurück zum Zitat W. Chen, L. Xu, L. Zhao, Y. Han, H. Jing, Y. Zhang, and Y. Li, “Thermo-mechanical-metallurgical modeling and validation for ferritic steel weldments,” J. Constr. Steel Res. 166, 105948 (2020).CrossRef W. Chen, L. Xu, L. Zhao, Y. Han, H. Jing, Y. Zhang, and Y. Li, “Thermo-mechanical-metallurgical modeling and validation for ferritic steel weldments,” J. Constr. Steel Res. 166, 105948 (2020).CrossRef
77.
Zurück zum Zitat Q. Wang, X. S. Liu, P. Wang, X. Xiong, and H. Y. Fang, “Numerical simulation of residual stress in 10Ni5CrMoV steel weldments,” J. Mater. Process. Technol. 240, 77–86 (2017).CrossRef Q. Wang, X. S. Liu, P. Wang, X. Xiong, and H. Y. Fang, “Numerical simulation of residual stress in 10Ni5CrMoV steel weldments,” J. Mater. Process. Technol. 240, 77–86 (2017).CrossRef
78.
Zurück zum Zitat M. J. Starink, C. Y. Zahra, and A. M. Zahra, “Analysis of precipitation in Al-based alloys using a novel model for nucleation and growth reactions,” J. Therm. Anal. Calorim. 51, 933–942 (1998).CrossRef M. J. Starink, C. Y. Zahra, and A. M. Zahra, “Analysis of precipitation in Al-based alloys using a novel model for nucleation and growth reactions,” J. Therm. Anal. Calorim. 51, 933–942 (1998).CrossRef
79.
Zurück zum Zitat O. R. Myhr, Grong, H. G. Fjær, and C. D. Marioara, “Modelling of the microstructure and strength evolution in al-mg-si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004).CrossRef O. R. Myhr, Grong, H. G. Fjær, and C. D. Marioara, “Modelling of the microstructure and strength evolution in al-mg-si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004).CrossRef
80.
Zurück zum Zitat R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous second-phase precipitation,” in Mater. Sci. Technol. (2013), pp. 309–407. R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous second-phase precipitation,” in Mater. Sci. Technol. (2013), pp. 309–407.
81.
Zurück zum Zitat A. Simar, Y. Bréchet, B. de Meester, A. Denquin, and T. Pardoen, “Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6,” Acta Mater. 55, 6133–6143 (2007).CrossRef A. Simar, Y. Bréchet, B. de Meester, A. Denquin, and T. Pardoen, “Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6,” Acta Mater. 55, 6133–6143 (2007).CrossRef
82.
Zurück zum Zitat M. Perez, M. Dumont, and D. Acevedo-Reyes, “Implementation of classical nucleation and growth theories for precipitation,” Acta Mater. 56, 2119–2132 (2008).CrossRef M. Perez, M. Dumont, and D. Acevedo-Reyes, “Implementation of classical nucleation and growth theories for precipitation,” Acta Mater. 56, 2119–2132 (2008).CrossRef
83.
Zurück zum Zitat J. da Costa Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson, “On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates,” Acta Mater. 56, 6109–6122 (2008).CrossRef J. da Costa Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson, “On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates,” Acta Mater. 56, 6109–6122 (2008).CrossRef
84.
Zurück zum Zitat D. Bardel, M. Perez, D. Nelias, A. Deschamps, C. R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier, “Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy,” Acta Mater. 62, 129–140 (2014).CrossRef D. Bardel, M. Perez, D. Nelias, A. Deschamps, C. R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier, “Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy,” Acta Mater. 62, 129–140 (2014).CrossRef
85.
Zurück zum Zitat J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys,” Acta Mater. 49, 599–613 (2001).CrossRef J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys,” Acta Mater. 49, 599–613 (2001).CrossRef
86.
Zurück zum Zitat J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, 2002), 1st ed. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, 2002), 1st ed.
87.
Zurück zum Zitat N. Saunders, “Calculated stable and metastable phase equilibria in Al–Li–Zr alloys,” Z. Met. 80, 894–903 (1989). N. Saunders, “Calculated stable and metastable phase equilibria in Al–Li–Zr alloys,” Z. Met. 80, 894–903 (1989).
88.
Zurück zum Zitat D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Chapman & Hall, Ed., 1992). D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Chapman & Hall, Ed., 1992).
89.
Zurück zum Zitat J. D. Robson, M. J. Jones, and P. B. Prangnell, “Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys,” Acta Mater. 51, 1453–1468 (2003).CrossRef J. D. Robson, M. J. Jones, and P. B. Prangnell, “Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys,” Acta Mater. 51, 1453–1468 (2003).CrossRef
90.
Zurück zum Zitat J. D. Robson, “A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium,” Acta Mater. 52, 1409–1421 (2004).CrossRef J. D. Robson, “A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium,” Acta Mater. 52, 1409–1421 (2004).CrossRef
91.
Zurück zum Zitat E. Clouet, A. Barbu, L. Laé, and G. Martin, “Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics,” Acta Mater. 53, 2313–2325 (2005).CrossRef E. Clouet, A. Barbu, L. Laé, and G. Martin, “Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics,” Acta Mater. 53, 2313–2325 (2005).CrossRef
92.
Zurück zum Zitat V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Y. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 115, 286–294 (2014).CrossRef V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Y. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 115, 286–294 (2014).CrossRef
93.
Zurück zum Zitat V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Y. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef V. S. Zolotorevskii, A. V. Pozdnyakov, and A. Y. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef
94.
Zurück zum Zitat D. S. Svyetlichnyy, J. Nowak, and Ł. Łach, “Modeling of recrystallization with recovery by frontal cellular automata,” in Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2012), pp. 494–503. D. S. Svyetlichnyy, J. Nowak, and Ł. Łach, “Modeling of recrystallization with recovery by frontal cellular automata,” in Proceedings of the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2012), pp. 494–503.
95.
Zurück zum Zitat O. Seppälä, A. Pohjonen, A. Kaijalainen, J. Larkiola, and D. Porter, “Simulation of bainite and martensite formation using a noval cellular automata method,” Procedia Manuf. 15, 1856–1863 (2018).CrossRef O. Seppälä, A. Pohjonen, A. Kaijalainen, J. Larkiola, and D. Porter, “Simulation of bainite and martensite formation using a noval cellular automata method,” Procedia Manuf. 15, 1856–1863 (2018).CrossRef
96.
Zurück zum Zitat S. Kundu, M. Dutta, S. Ganguly, and S. Chandra, “Prediction of phase transformation and microstructure in steel using cellular automaton technique,” Scr. Mater. 50, 891–895 (2004).CrossRef S. Kundu, M. Dutta, S. Ganguly, and S. Chandra, “Prediction of phase transformation and microstructure in steel using cellular automaton technique,” Scr. Mater. 50, 891–895 (2004).CrossRef
97.
Zurück zum Zitat J. Zhang, Z. Li, K. Wen, S. Huang, X. Li, H. Yan, L. Yan, H. Liu, Y. Zhang, and B. Xiong, “Simulation of dynamic recrystallization for an Al–Zn–Mg–Cu alloy using cellular automaton,” Prog. Nat. Sci. Mater. Int. 29, 477–484 (2019).CrossRef J. Zhang, Z. Li, K. Wen, S. Huang, X. Li, H. Yan, L. Yan, H. Liu, Y. Zhang, and B. Xiong, “Simulation of dynamic recrystallization for an Al–Zn–Mg–Cu alloy using cellular automaton,” Prog. Nat. Sci. Mater. Int. 29, 477–484 (2019).CrossRef
98.
Zurück zum Zitat M. Sitko, M. Pietrzyk, and L. Madej, “Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method,” J. Comput. Sci. 16, 98–113 (2016).CrossRef M. Sitko, M. Pietrzyk, and L. Madej, “Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method,” J. Comput. Sci. 16, 98–113 (2016).CrossRef
99.
Zurück zum Zitat S. Hore, S. K. Das, S. Banerjee, and S. Mukherjee, “Computational modelling of static recrystallization and two dimensional microstructure evolution during hot strip rolling of advanced high strength steel,” J. Manuf. Process. 17, 78–87 (2015).CrossRef S. Hore, S. K. Das, S. Banerjee, and S. Mukherjee, “Computational modelling of static recrystallization and two dimensional microstructure evolution during hot strip rolling of advanced high strength steel,” J. Manuf. Process. 17, 78–87 (2015).CrossRef
100.
Zurück zum Zitat M. A. Steiner, R. J. McCabe, E. Garlea, and S. R. Agnew, “Monte Carlo modeling of recrystallization processes in α-uranium,” J. Nucl. Mater. 492, 74–87 (2017).CrossRef M. A. Steiner, R. J. McCabe, E. Garlea, and S. R. Agnew, “Monte Carlo modeling of recrystallization processes in α-uranium,” J. Nucl. Mater. 492, 74–87 (2017).CrossRef
101.
Zurück zum Zitat D. Molnar, C. Niedermeier, A. Mora, P. Binkele, and S. Schmauder, “Activation energies for nucleation and growth and critical cluster size dependence in JMAK analyses of kinetic Monte-Carlo simulations of precipitation,” Continuum Mech. Thermodyn. 24, 607–617 (2012).CrossRef D. Molnar, C. Niedermeier, A. Mora, P. Binkele, and S. Schmauder, “Activation energies for nucleation and growth and critical cluster size dependence in JMAK analyses of kinetic Monte-Carlo simulations of precipitation,” Continuum Mech. Thermodyn. 24, 607–617 (2012).CrossRef
102.
Zurück zum Zitat J. Rasti, “Study of the grain size distribution during preheating period prior to the hot deformation in AISI 316L austenitic stainless steel,” Phys. Met. Metallogr. 120, 584–592 (2019).CrossRef J. Rasti, “Study of the grain size distribution during preheating period prior to the hot deformation in AISI 316L austenitic stainless steel,” Phys. Met. Metallogr. 120, 584–592 (2019).CrossRef
103.
Zurück zum Zitat O. I. Gorbatov, Y. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab initio modeling of decomposition in iron based alloys,” Phys. Met. Metallogr. 117, 1293–1327 (2016).CrossRef O. I. Gorbatov, Y. N. Gornostyrev, P. A. Korzhavyi, and A. V. Ruban, “Ab initio modeling of decomposition in iron based alloys,” Phys. Met. Metallogr. 117, 1293–1327 (2016).CrossRef
104.
Zurück zum Zitat T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, Y. Tomita, “Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization,” Mater. Trans. 49, 2559–2565 (2008).CrossRef T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, Y. Tomita, “Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization,” Mater. Trans. 49, 2559–2565 (2008).CrossRef
105.
Zurück zum Zitat J. Zhang, C. W. Zheng, and D. Z. Li, “A multi-phase field model for static recrystallization of hot deformed austenite in a C–Mn steel,” Acta Metall. Sin. (English Lett) 31, 208–215 (2018).CrossRef J. Zhang, C. W. Zheng, and D. Z. Li, “A multi-phase field model for static recrystallization of hot deformed austenite in a C–Mn steel,” Acta Metall. Sin. (English Lett) 31, 208–215 (2018).CrossRef
106.
Zurück zum Zitat K. G. F. Janssens, “An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials,” Math. Comput. Simul. 80, 1361–1381 (2010).CrossRef K. G. F. Janssens, “An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials,” Math. Comput. Simul. 80, 1361–1381 (2010).CrossRef
107.
Zurück zum Zitat L. Sieradzki and L. Madej, “A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials,” Comput. Mater. Sci. 67, 156–173 (2013).CrossRef L. Sieradzki and L. Madej, “A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials,” Comput. Mater. Sci. 67, 156–173 (2013).CrossRef
108.
Zurück zum Zitat H. Hallberg, “Approaches to modeling of recrystallization,” Metals (Basel) 1, 16–48 (2011).CrossRef H. Hallberg, “Approaches to modeling of recrystallization,” Metals (Basel) 1, 16–48 (2011).CrossRef
109.
Zurück zum Zitat X. Song and M. Rettenmayr, “Modeling recrystallization in a material containing fine and coarse particles,” Comput. Mater. Sci. 40, 234–245 (2007).CrossRef X. Song and M. Rettenmayr, “Modeling recrystallization in a material containing fine and coarse particles,” Comput. Mater. Sci. 40, 234–245 (2007).CrossRef
110.
Zurück zum Zitat Y. C. Lin, Y. X. Liu, M. S. Chen, M. H. Huang, X. Ma, and Z. L. Long, “Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model,” Mater. Des. 99, 107–114 (2016).CrossRef Y. C. Lin, Y. X. Liu, M. S. Chen, M. H. Huang, X. Ma, and Z. L. Long, “Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model,” Mater. Des. 99, 107–114 (2016).CrossRef
111.
Zurück zum Zitat R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Jensen Juul, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett, “Current issues in recrystallization: A review,” Mater. Sci. Eng., A 238, 219–274 (1997).CrossRef R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Jensen Juul, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett, “Current issues in recrystallization: A review,” Mater. Sci. Eng., A 238, 219–274 (1997).CrossRef
112.
Zurück zum Zitat Y. X. Liu, Y. C. Lin, and Y. Zhou, “2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions,” Mater. Sci. Eng., A 691, 88–99 (2017).CrossRef Y. X. Liu, Y. C. Lin, and Y. Zhou, “2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions,” Mater. Sci. Eng., A 691, 88–99 (2017).CrossRef
113.
Zurück zum Zitat L. Madej, M. Sitko, K. Perzynski, L. Sieradzki, K. Radwanski, and R. Kuziak, “Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure,” Multiscale Mater. Model. 77, 235–254 (2016). L. Madej, M. Sitko, K. Perzynski, L. Sieradzki, K. Radwanski, and R. Kuziak, “Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure,” Multiscale Mater. Model. 77, 235–254 (2016).
114.
Zurück zum Zitat R. Ding and Z. X. Guo, “Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization,” Acta Mater. 49, 3163–3175 (2001).CrossRef R. Ding and Z. X. Guo, “Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization,” Acta Mater. 49, 3163–3175 (2001).CrossRef
115.
Zurück zum Zitat F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen, “Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique,” Mater. Sci. Eng., A 527, 5539–5549 (2010).CrossRef F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen, “Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique,” Mater. Sci. Eng., A 527, 5539–5549 (2010).CrossRef
116.
Zurück zum Zitat F. Chen, K. Qi, Z. Cui, and X. Lai, “Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method,” Comput. Mater. Sci. 83, 331–340 (2014).CrossRef F. Chen, K. Qi, Z. Cui, and X. Lai, “Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method,” Comput. Mater. Sci. 83, 331–340 (2014).CrossRef
117.
Zurück zum Zitat Y. X. Liu, Y. C. Lin, H. Bin. Li, D. X. Wen, X. M. Chen, and M. S. Chen, “Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model,” Mater. Sci. Eng., A 626, 432–440 (2015).CrossRef Y. X. Liu, Y. C. Lin, H. Bin. Li, D. X. Wen, X. M. Chen, and M. S. Chen, “Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model,” Mater. Sci. Eng., A 626, 432–440 (2015).CrossRef
118.
Zurück zum Zitat F. Sun, D. Q. Zhang, L. Cheng, P. Zheng, D. M. Liao, and B. Zhu, “Microstructure evolution modeling and simulation for dynamic recrystallization of Cr12MoV die steel during hot compression based on real metallographic image,” Met. Mater. Int. 25, 966–981 (2019).CrossRef F. Sun, D. Q. Zhang, L. Cheng, P. Zheng, D. M. Liao, and B. Zhu, “Microstructure evolution modeling and simulation for dynamic recrystallization of Cr12MoV die steel during hot compression based on real metallographic image,” Met. Mater. Int. 25, 966–981 (2019).CrossRef
119.
Zurück zum Zitat C. Zhang, L. Zhang, Q. Xu, Y. Xia, and W. Shen, “The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr–Ni–Mo alloyed steel in hot working process,” Mater. Sci. Eng., A 678, 33–43 (2016).CrossRef C. Zhang, L. Zhang, Q. Xu, Y. Xia, and W. Shen, “The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr–Ni–Mo alloyed steel in hot working process,” Mater. Sci. Eng., A 678, 33–43 (2016).CrossRef
120.
Zurück zum Zitat H. Zhang, J. Wang, Q. Chen, D. Shu, C. Wang, G. Chen, and Z. Zhao, “Study of dynamic recrystallization behavior of T2 copper in hot working conditions by experiments and cellular automaton method,” J. Alloys Compd. 784, 1071–1083 (2019).CrossRef H. Zhang, J. Wang, Q. Chen, D. Shu, C. Wang, G. Chen, and Z. Zhao, “Study of dynamic recrystallization behavior of T2 copper in hot working conditions by experiments and cellular automaton method,” J. Alloys Compd. 784, 1071–1083 (2019).CrossRef
121.
Zurück zum Zitat X. Li, X. Li, H. Zhou, X. Zhou, F. Li, and Q. Liu, “Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton,” Comput. Mater. Sci. 140, 95–104 (2017).CrossRef X. Li, X. Li, H. Zhou, X. Zhou, F. Li, and Q. Liu, “Simulation of dynamic recrystallization in AZ80 magnesium alloy using cellular automaton,” Comput. Mater. Sci. 140, 95–104 (2017).CrossRef
122.
Zurück zum Zitat N. Yazdipour and P. D. Hodgson, “Modelling post-deformation softening kinetics of 304 austenitic stainless steel using cellular automata,” Comput. Mater. Sci. 54, 56–65 (2012).CrossRef N. Yazdipour and P. D. Hodgson, “Modelling post-deformation softening kinetics of 304 austenitic stainless steel using cellular automata,” Comput. Mater. Sci. 54, 56–65 (2012).CrossRef
123.
Zurück zum Zitat Y. J. Lan, D. Z. Li, and Y. Y. Li, “Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method,” Acta Mater. 52, 1721–1729 (2004).CrossRef Y. J. Lan, D. Z. Li, and Y. Y. Li, “Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method,” Acta Mater. 52, 1721–1729 (2004).CrossRef
124.
Zurück zum Zitat Y. J. Lan, D. Z. Li, and Y. Y. Li, “Mesoscale simulation of ferrite transformation from deformed austenite during continuous cooling in a C–Mn steel using a cellular automaton method,” Comput. Mater. Sci. 32, 147–155 (2005).CrossRef Y. J. Lan, D. Z. Li, and Y. Y. Li, “Mesoscale simulation of ferrite transformation from deformed austenite during continuous cooling in a C–Mn steel using a cellular automaton method,” Comput. Mater. Sci. 32, 147–155 (2005).CrossRef
125.
Zurück zum Zitat M. Militzer, R. Pandi, and E. B. Hawbolt, “Ferrite nucleation and growth during continuous cooling,” Metall. Mater. Trans. A 27, 1547–1556 (1996).CrossRef M. Militzer, R. Pandi, and E. B. Hawbolt, “Ferrite nucleation and growth during continuous cooling,” Metall. Mater. Trans. A 27, 1547–1556 (1996).CrossRef
126.
Zurück zum Zitat B. J. Yang, L. Chuzhoy, and M. L. Johnson, “Modeling of reaustenitization of hypoeutectoid steels with cellular automaton method,” Comput. Mater. Sci. 41, 186–194 (2007).CrossRef B. J. Yang, L. Chuzhoy, and M. L. Johnson, “Modeling of reaustenitization of hypoeutectoid steels with cellular automaton method,” Comput. Mater. Sci. 41, 186–194 (2007).CrossRef
127.
Zurück zum Zitat X. Yu and S. Chen, “A simulation of Cr depletion in austenitic stainless steel with cellular automaton,” Comput. Mater. Sci. 45, 899–904 (2009).CrossRef X. Yu and S. Chen, “A simulation of Cr depletion in austenitic stainless steel with cellular automaton,” Comput. Mater. Sci. 45, 899–904 (2009).CrossRef
128.
Zurück zum Zitat S. Hore, S. K. Das, S. Banerjee, and S. Mukherjee, “A multiscale coupled Monte Carlo model to characterize microstructure evolution during hot rolling of Mo-TRIP steel,” Acta Mater. 61, 7251–7259 (2013).CrossRef S. Hore, S. K. Das, S. Banerjee, and S. Mukherjee, “A multiscale coupled Monte Carlo model to characterize microstructure evolution during hot rolling of Mo-TRIP steel,” Acta Mater. 61, 7251–7259 (2013).CrossRef
129.
Zurück zum Zitat M. Kazeminezhad, “On the modeling of the static recrystallization considering the initial grain size effects,” Mater. Sci. Eng., A 486, 202–207 (2008).CrossRef M. Kazeminezhad, “On the modeling of the static recrystallization considering the initial grain size effects,” Mater. Sci. Eng., A 486, 202–207 (2008).CrossRef
130.
Zurück zum Zitat C. E. Krill and L. Q. Chen, “Computer simulation of 3-D grain growth using a phase-field model,” Acta Mater. 50, 3057–3073 (2002). C. E. Krill and L. Q. Chen, “Computer simulation of 3-D grain growth using a phase-field model,” Acta Mater. 50, 3057–3073 (2002).
131.
Zurück zum Zitat I. Steinbach and F. Pezzolla, “A generalized field method for multiphase transformations using interface fields,” Phys. D 134, 385–393 (1999).CrossRef I. Steinbach and F. Pezzolla, “A generalized field method for multiphase transformations using interface fields,” Phys. D 134, 385–393 (1999).CrossRef
132.
Zurück zum Zitat G. Kugler and R. Turk, “Modeling the dynamic recrystallization under multi-stage hot deformation,” Acta Mater. 52, 4659–4668 (2004).CrossRef G. Kugler and R. Turk, “Modeling the dynamic recrystallization under multi-stage hot deformation,” Acta Mater. 52, 4659–4668 (2004).CrossRef
133.
Zurück zum Zitat X. Zhang, G. Shen, C. Li, and J. Gu, “Phase-field simulation of austenite reversion in a Fe–9.6Ni–7.1Mn (at %) martensitic steel governed by a coupled diffusional/displacive mechanism,” Mater. Des. 188, 108426 (2020).CrossRef X. Zhang, G. Shen, C. Li, and J. Gu, “Phase-field simulation of austenite reversion in a Fe–9.6Ni–7.1Mn (at %) martensitic steel governed by a coupled diffusional/displacive mechanism,” Mater. Des. 188, 108426 (2020).CrossRef
134.
Zurück zum Zitat T. Kinoshita and M. Ohno, “Phase-field simulation of abnormal grain growth during carburization in Nb-added steel,” Comput. Mater. Sci. 177, 109558 (2020).CrossRef T. Kinoshita and M. Ohno, “Phase-field simulation of abnormal grain growth during carburization in Nb-added steel,” Comput. Mater. Sci. 177, 109558 (2020).CrossRef
135.
Zurück zum Zitat L. T. Mushongera, P. G. K. Amos, B. Nestler, and K. Ankit, “Phase-field simulations of pearlitic divergence in Fe–C–Mn steels,” Acta Mater. 150, 78–87 (2018).CrossRef L. T. Mushongera, P. G. K. Amos, B. Nestler, and K. Ankit, “Phase-field simulations of pearlitic divergence in Fe–C–Mn steels,” Acta Mater. 150, 78–87 (2018).CrossRef
Metadaten
Titel
Simulation of Microstructure Evolution in Metal Materials under Hot Plastic Deformation and Heat Treatment
verfasst von
A. Yu. Churyumov
A. V. Pozdniakov
Publikationsdatum
01.11.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 11/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20110034

Weitere Artikel der Ausgabe 11/2020

Physics of Metals and Metallography 11/2020 Zur Ausgabe