Skip to main content
Erschienen in: Metals and Materials International 2/2019

11.10.2018

Kinetic Model for the Phase Transformation of High-Strength Steel Under Arbitrary Cooling Conditions

verfasst von: Hao Zhao, Xiuli Hu, Junjia Cui, Zhongwen Xing

Erschienen in: Metals and Materials International | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To meet the demands of energy conservation and security improvement, high-strength steel (HSS) is widely used to produce safety-related automotive components. In addition to fully high-strength parts, HSS is also used to manufacture components with tailored properties. In this work, a computational model is presented to predict the austenite decomposition into ferrite, pearlite, bainite and martensite during arbitrary cooling paths in HSS. First, a kinetic model for both diffusional and martensite transformations under isothermal or non-isothermal with constant cooling rate cooling conditions is proposed based on the well-known Johnson–Mehl–Avrami–Kolmogorov and Kamamoto models. The model is then modified for arbitrary cooling conditions through the introduction of the effects of the cooling rate, and the influence of diffusional transformations on martensite transformation is considered. Next, the detailed kinetics parameters are identified by fitting experimental data from BR1500HS steel. The model is further verified by several experiments conducted outside of the fit domain. The results obtained by calculation are found to be in good agreement with the corresponding experimental data, including the transformation histories, volume fraction microconstituents and Vickers hardness. Additionally, the model is also implemented as a subroutine in ABAQUS to simulate a tailored-strength hot stamping process of HSS, and the results are consistent with the test data. Thus, this computational model can be used as a guideline to design manufacturing processes that achieve the desired microstructure and material properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Åkerström, G. Bergman, M. Oldenburg, Numerical implementation of a constitutive model for simulation of hot stamping. Model. Simul. Mater. Sci. Eng. 15(2), 105–119 (2007)CrossRef P. Åkerström, G. Bergman, M. Oldenburg, Numerical implementation of a constitutive model for simulation of hot stamping. Model. Simul. Mater. Sci. Eng. 15(2), 105–119 (2007)CrossRef
2.
Zurück zum Zitat G. Georgiadis, A.E. Tekkaya, P. Weigert, S. Horneber, P.A. Kuhnleal, Formability analysis of thin press hardening steel sheets under isothermal and non-isothermal conditions. Int.J. Mater. Form. 10(3), 1–15 (2016) G. Georgiadis, A.E. Tekkaya, P. Weigert, S. Horneber, P.A. Kuhnleal, Formability analysis of thin press hardening steel sheets under isothermal and non-isothermal conditions. Int.J. Mater. Form. 10(3), 1–15 (2016)
3.
Zurück zum Zitat H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRef H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Technol. 210(15), 2103–2118 (2010)CrossRef
4.
Zurück zum Zitat P. Hippchen, A. Lipp, H. Grass, P. Craighero, M. Fleischer, M. Merklein, Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties. J. Mater. Process. Technol. 228(8), 59–67 (2016)CrossRef P. Hippchen, A. Lipp, H. Grass, P. Craighero, M. Fleischer, M. Merklein, Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties. J. Mater. Process. Technol. 228(8), 59–67 (2016)CrossRef
5.
Zurück zum Zitat R. George, A. Bardelcik, M.J. Worswick, Hot forming of boron steels using heated and cooled tooling for tailored properties. J. Mater. Process. Technol. 212(11), 2386–2399 (2012)CrossRef R. George, A. Bardelcik, M.J. Worswick, Hot forming of boron steels using heated and cooled tooling for tailored properties. J. Mater. Process. Technol. 212(11), 2386–2399 (2012)CrossRef
6.
Zurück zum Zitat K. Omer, R. George, A. Bardelcik, M. Worswick, S. Malcolm, D. Detwiler, Development of a hot stamped channel section with axially tailored properties–experiments and models. Int. J. Mater. Form. 11(1), 1–16 (2017) K. Omer, R. George, A. Bardelcik, M. Worswick, S. Malcolm, D. Detwiler, Development of a hot stamped channel section with axially tailored properties–experiments and models. Int. J. Mater. Form. 11(1), 1–16 (2017)
7.
Zurück zum Zitat B.A. Hay, B. Bourouga, C. Dessain, Thermal contact resistance estimation at the blank/tool interface: experimental approach to simulate the blank cooling during the hot stamping process. Int. J. Mater. Form. 3(3), 147–163 (2010)CrossRef B.A. Hay, B. Bourouga, C. Dessain, Thermal contact resistance estimation at the blank/tool interface: experimental approach to simulate the blank cooling during the hot stamping process. Int. J. Mater. Form. 3(3), 147–163 (2010)CrossRef
8.
Zurück zum Zitat P. Åkerström, M. Oldenburg, Austenite decomposition during press hardening of a boron steel—computer simulation and test. J. Mater. Process. Technol. 174(1), 399–406 (2006)CrossRef P. Åkerström, M. Oldenburg, Austenite decomposition during press hardening of a boron steel—computer simulation and test. J. Mater. Process. Technol. 174(1), 399–406 (2006)CrossRef
9.
Zurück zum Zitat H.H. Bok, S.N. Kim, D.W. Suh, F. Barlat, M.G. Lee, Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel. Mater. Sci. Eng., A 626, 67–73 (2015)CrossRef H.H. Bok, S.N. Kim, D.W. Suh, F. Barlat, M.G. Lee, Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel. Mater. Sci. Eng., A 626, 67–73 (2015)CrossRef
10.
Zurück zum Zitat W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–458 (1939) W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–458 (1939)
11.
Zurück zum Zitat M. Avrami, Kinetics of phase change. III: granulation, phase change and microstructure. J. Chem. Phys. 9(2), 177–184 (1941)CrossRef M. Avrami, Kinetics of phase change. III: granulation, phase change and microstructure. J. Chem. Phys. 9(2), 177–184 (1941)CrossRef
12.
Zurück zum Zitat A.N. Kolmogorov, On the statistical theory of metal crystallization. Izv. Akad. Nauk. SSSR Ser. Mat. 3, 355–359 (1937) A.N. Kolmogorov, On the statistical theory of metal crystallization. Izv. Akad. Nauk. SSSR Ser. Mat. 3, 355–359 (1937)
13.
Zurück zum Zitat Kirkaldy J.S., Venugopalan D. Prediction of microstructure and hardenability in low-alloy steels, in Phase Transformation in Ferrous Alloys, ed. by A.R. Marder, J.I. Goldstein, 1983, pp. 125–148 Kirkaldy J.S., Venugopalan D. Prediction of microstructure and hardenability in low-alloy steels, in Phase Transformation in Ferrous Alloys, ed. by A.R. Marder, J.I. Goldstein, 1983, pp. 125–148
14.
Zurück zum Zitat J.W. Cahn, The kinetics of grain boundary nucleated reactions. Acta Metall. 4(5), 449–459 (1956)CrossRef J.W. Cahn, The kinetics of grain boundary nucleated reactions. Acta Metall. 4(5), 449–459 (1956)CrossRef
15.
Zurück zum Zitat M. Umemoto, N. Nishioka, Prediction of hardenability from isothermal transformation diagrams. J. Heat. Treat. 2(2), 130–138 (1981)CrossRef M. Umemoto, N. Nishioka, Prediction of hardenability from isothermal transformation diagrams. J. Heat. Treat. 2(2), 130–138 (1981)CrossRef
16.
Zurück zum Zitat F. Liu, F. Sommer, E.J. Mittemeijer, An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39(5), 1621–1634 (2004)CrossRef F. Liu, F. Sommer, E.J. Mittemeijer, An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39(5), 1621–1634 (2004)CrossRef
17.
Zurück zum Zitat A. Pohjonen, M. Somani, D. Porter, Modelling of austenite transformation along arbitrary cooling paths. Comput. Mater. Sci. 150, 244–251 (2018)CrossRef A. Pohjonen, M. Somani, D. Porter, Modelling of austenite transformation along arbitrary cooling paths. Comput. Mater. Sci. 150, 244–251 (2018)CrossRef
18.
Zurück zum Zitat M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, A computational model for the prediction of steel hardenability. Metall. Mater. Trans. B 29(3), 661–672 (1998)CrossRef M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, A computational model for the prediction of steel hardenability. Metall. Mater. Trans. B 29(3), 661–672 (1998)CrossRef
19.
Zurück zum Zitat N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, The Calculation of TTT and CCT diagrams for General Steels. Sente Software Ltd, 2004 N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, The Calculation of TTT and CCT diagrams for General Steels. Sente Software Ltd, 2004
20.
Zurück zum Zitat S.J. Lee, E.J. Pavlina, C.J.V. Tyne, Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Mater. Sci. Eng., A 527(13), 3186–3194 (2010)CrossRef S.J. Lee, E.J. Pavlina, C.J.V. Tyne, Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Mater. Sci. Eng., A 527(13), 3186–3194 (2010)CrossRef
21.
Zurück zum Zitat D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7(1), 59–60 (1959)CrossRef D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7(1), 59–60 (1959)CrossRef
22.
Zurück zum Zitat C.L. Magee, The nucleation of martensite, in Phase Transformations, ed. by H.I. Aaronson, V.F. Zackay, ASM International, 1970, pp. 115–156 C.L. Magee, The nucleation of martensite, in Phase Transformations, ed. by H.I. Aaronson, V.F. Zackay, ASM International, 1970, pp. 115–156
23.
Zurück zum Zitat K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res. Mech. 18, 251–263 (1986) K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res. Mech. 18, 251–263 (1986)
24.
Zurück zum Zitat S.J. Lee, Y.K. Lee, Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics. Acta Mater. 56(7), 1482–1490 (2008)CrossRef S.J. Lee, Y.K. Lee, Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics. Acta Mater. 56(7), 1482–1490 (2008)CrossRef
25.
Zurück zum Zitat R.F. Hehemann, K.R. Kinsman, H.I. Aaronson, A debate on the bainite reaction. Metall. Trans. 3(5), 1077–1094 (1972)CrossRef R.F. Hehemann, K.R. Kinsman, H.I. Aaronson, A debate on the bainite reaction. Metall. Trans. 3(5), 1077–1094 (1972)CrossRef
26.
Zurück zum Zitat H.K.D.H. Bhadeshia, D.V. Edmonds, The bainite transformation in a silicon steel. Metall. Trans. A 10(7), 895–907 (1979)CrossRef H.K.D.H. Bhadeshia, D.V. Edmonds, The bainite transformation in a silicon steel. Metall. Trans. A 10(7), 895–907 (1979)CrossRef
27.
Zurück zum Zitat F.G. Caballero, M.K. Miller, C. Garcia-Mateo et al., New experimental evidence of the diffusionless transformation nature of bainite. J. Alloy. Compd. 577(5), S626–S630 (2013)CrossRef F.G. Caballero, M.K. Miller, C. Garcia-Mateo et al., New experimental evidence of the diffusionless transformation nature of bainite. J. Alloy. Compd. 577(5), S626–S630 (2013)CrossRef
28.
Zurück zum Zitat A. Borgenstam, M. Hillert, J. Ågren, Metallographic evidence of carbon diffusion in the growth of bainite. Acta Mater. 57(11), 3242–3252 (2009)CrossRef A. Borgenstam, M. Hillert, J. Ågren, Metallographic evidence of carbon diffusion in the growth of bainite. Acta Mater. 57(11), 3242–3252 (2009)CrossRef
29.
Zurück zum Zitat Z.C. Liu, H.Y. Wang, H.P. Ren, Shear-diffusion conformity mechanism of bainite transformation. in Heat Treatment of Metals, 2006 Z.C. Liu, H.Y. Wang, H.P. Ren, Shear-diffusion conformity mechanism of bainite transformation. in Heat Treatment of Metals, 2006
30.
Zurück zum Zitat S. Kamamoto, T. Nishimori, S. Kinoshita, Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts. Met. Sci. J. 1(10), 798–804 (1985) S. Kamamoto, T. Nishimori, S. Kinoshita, Analysis of residual stress and distortion resulting from quenching in large low-alloy steel shafts. Met. Sci. J. 1(10), 798–804 (1985)
31.
Zurück zum Zitat W. Piekarska, M. Kubiak, Z. Saternus, Numerical modelling of thermal and structural strain in laser welding process/Modelowanie Numeryczne Odkształceń Cieplnych I Strukturalnych W Procesie Spawania Techniką Laserową. Arch. Metall. Mater. 57(4), 1219–1227 (2012)CrossRef W. Piekarska, M. Kubiak, Z. Saternus, Numerical modelling of thermal and structural strain in laser welding process/Modelowanie Numeryczne Odkształceń Cieplnych I Strukturalnych W Procesie Spawania Techniką Laserową. Arch. Metall. Mater. 57(4), 1219–1227 (2012)CrossRef
32.
Zurück zum Zitat F. Liu, F. Sommer, C. Bos et al., Analysis of solid state phase transformation kinetics: models and recipes. Metall. Rev. 52(4), 193–212 (2007)CrossRef F. Liu, F. Sommer, C. Bos et al., Analysis of solid state phase transformation kinetics: models and recipes. Metall. Rev. 52(4), 193–212 (2007)CrossRef
33.
Zurück zum Zitat J. Rohde, A. Jeppsson, Literature review of heat treatment simulations with respect to phase transformation, residual stresses and distortion. Scand. J. Metall. 29(2), 47–62 (2010)CrossRef J. Rohde, A. Jeppsson, Literature review of heat treatment simulations with respect to phase transformation, residual stresses and distortion. Scand. J. Metall. 29(2), 47–62 (2010)CrossRef
34.
Zurück zum Zitat E.B. Hawbolt, B. Chau, J.K. Brimacombe, Kinetics of austenite-ferrite and austenite-pearlite transformations in a 1025 carbon steel. Metall. Trans. A 16(4), 565–578 (1985)CrossRef E.B. Hawbolt, B. Chau, J.K. Brimacombe, Kinetics of austenite-ferrite and austenite-pearlite transformations in a 1025 carbon steel. Metall. Trans. A 16(4), 565–578 (1985)CrossRef
35.
Zurück zum Zitat M. Lusk, H. Jou, On the rule of additivity in phase transformation kinetics. Metall. Mater. Trans. A 28(2), 287–291 (1997)CrossRef M. Lusk, H. Jou, On the rule of additivity in phase transformation kinetics. Metall. Mater. Trans. A 28(2), 287–291 (1997)CrossRef
36.
Zurück zum Zitat Y.T. Zhu, T.C. Lowe, Application of, and precautions for the use of, the Rule of additivity, in phase transformation. Metall. Mater. Trans. B 31(4), 675–682 (2000)CrossRef Y.T. Zhu, T.C. Lowe, Application of, and precautions for the use of, the Rule of additivity, in phase transformation. Metall. Mater. Trans. B 31(4), 675–682 (2000)CrossRef
37.
Zurück zum Zitat M. Naderi, A. Saeed-Akbari, W. Bleck, The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel. Mater. Sci. Eng., A 487(1), 445–455 (2008)CrossRef M. Naderi, A. Saeed-Akbari, W. Bleck, The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel. Mater. Sci. Eng., A 487(1), 445–455 (2008)CrossRef
38.
Zurück zum Zitat M. Nikravesh, M. Naderi, G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater. Sci. Eng., A 540(4), 24–29 (2012)CrossRef M. Nikravesh, M. Naderi, G.H. Akbari, Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater. Sci. Eng., A 540(4), 24–29 (2012)CrossRef
39.
Zurück zum Zitat H.C. Kang, B.J. Park, H.J. Ji et al., Determination of the continuous cooling transformation diagram of a high strength low alloyed steel. Met. Mater. Int. 22(6), 949–955 (2016)CrossRef H.C. Kang, B.J. Park, H.J. Ji et al., Determination of the continuous cooling transformation diagram of a high strength low alloyed steel. Met. Mater. Int. 22(6), 949–955 (2016)CrossRef
40.
Zurück zum Zitat T.T. Pham, E.B. Hawbolt, J.K. Brimacombe, Predicting the onset of transformation under noncontinuous cooling conditions: Part II: application to the austenite pearlite transformation. Metall. Mater. Trans. A 26(8), 1993–2000 (1995)CrossRef T.T. Pham, E.B. Hawbolt, J.K. Brimacombe, Predicting the onset of transformation under noncontinuous cooling conditions: Part II: application to the austenite pearlite transformation. Metall. Mater. Trans. A 26(8), 1993–2000 (1995)CrossRef
41.
Zurück zum Zitat J.L. Lee, Y.T. Pan, K.C. Hsieh, Assessment of ideal TTT diagram in C–Mn steels. Mater. Trans. 39(1), 196–202 (1998)CrossRef J.L. Lee, Y.T. Pan, K.C. Hsieh, Assessment of ideal TTT diagram in C–Mn steels. Mater. Trans. 39(1), 196–202 (1998)CrossRef
42.
Zurück zum Zitat J.S. Kirkaldy, Prediction of alloy hardenability from thermodynamic and kinetic data. Metall. Trans. 4(10), 2327–2333 (1973)CrossRef J.S. Kirkaldy, Prediction of alloy hardenability from thermodynamic and kinetic data. Metall. Trans. 4(10), 2327–2333 (1973)CrossRef
43.
Zurück zum Zitat A. Malakizadi, S. Hatami, L. Nyborg, Simulation of cooling behavior and microstructure development of PM steels. Int. J. Oncol. 37(4), 829–835 (2010) A. Malakizadi, S. Hatami, L. Nyborg, Simulation of cooling behavior and microstructure development of PM steels. Int. J. Oncol. 37(4), 829–835 (2010)
44.
Zurück zum Zitat K. Omer, R. George, A. Bardelcik, M. Worswick, S. Malcolm, D. Detwiler, Development of a hot stamped channel section with axially tailored properties–experiments and models. Int. J. Mater. Form. 11(1), 1–16 (2017) K. Omer, R. George, A. Bardelcik, M. Worswick, S. Malcolm, D. Detwiler, Development of a hot stamped channel section with axially tailored properties–experiments and models. Int. J. Mater. Form. 11(1), 1–16 (2017)
Metadaten
Titel
Kinetic Model for the Phase Transformation of High-Strength Steel Under Arbitrary Cooling Conditions
verfasst von
Hao Zhao
Xiuli Hu
Junjia Cui
Zhongwen Xing
Publikationsdatum
11.10.2018
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 2/2019
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-0196-2

Weitere Artikel der Ausgabe 2/2019

Metals and Materials International 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.