Skip to main content
Erschienen in: Thermal Engineering 3/2019

01.03.2019 | NUCLEAR POWER PLANTS

Evaluation of the Corrosion State of Equipment of the First Circuit of Transport Nuclear Reactors Using the Parameters of Water Chemistry

verfasst von: S. A. Kabakchi, A. V. Luzakov, D. S. Urtenov, E. A. Katanova, I. A. Gasai, A. E. Verkhovskii

Erschienen in: Thermal Engineering | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

An analysis of the results of investigation into the composition of the primary coolant of power units of nuclear-powered ice breakers Soviet Union and Arktika and the Sevmorput’ light carrier has revealed that an increase in the reactor power generation above 14 TW h leads to a sharp increase in the ammonia concentration in the coolant. An assumption was made that this effect was related with the radiation-chemical synthesis of ammonia from the nitrogen dissolved in the coolant and hydrogen resulting from enhancement of corrosion of the core structural members and fuel rod claddings made of zirconium alloys. To test the proposed hypothesis on the basis of the verified MORAVA H2 software package, a procedure was developed for calculating changes in the composition of the primary coolant in water-cooled water-moderated reactors (VVER) on exposure to reactor radiation with simultaneous metering of hydrogen at a controlled rate into the primary circuit (to simulate formation of corrosive hydrogen) during irradiation. This procedure was used to perform a computational experiment to find the qualitative regularities of the effect of “corrosive” hydrogen on the characteristics of water chemistry. The dependence of the calculated ratio of molar concentrations [NH3]/[H2] on the irradiation time has been demonstrated to linearly correlate with the measured dependencies of this ratio on the power output of similar reactor units on various nuclear-powered ships. This correlation allows for the statement on a reasonable basis that the [NH3]/[H2] ratio in the primary coolant of transport nuclear units is a fair indicator of the fact of general corrosion of zirconium alloys in the core having a structural member made of alloy E110.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A part of the total energy generation is not converted into useful heat but is spent for interaction of the reactor radiation with fuel, construction materials, and water coolant. Thus, the ionizing radiation dose of interest for radiation chemists, which is absorbed by the coolant, is a percentage of the total energy generation (for example, in VVER-1000 reactors, it is about 6%). The time of exposure of the coolant to radiation is directly proportional to the energy generation-to-reactor power ratio, which chemical engineers are interested in.
 
Literatur
1.
Zurück zum Zitat A. I. Kasperovich, B. I. Kolesov, and N. G. Sandler, “Water-chemical processes in atomic icebreaker reactors and floating power units,” At. Energy 81, 702–705 (1996).CrossRef A. I. Kasperovich, B. I. Kolesov, and N. G. Sandler, “Water-chemical processes in atomic icebreaker reactors and floating power units,” At. Energy 81, 702–705 (1996).CrossRef
2.
Zurück zum Zitat A. V. Bulanov, B. I. Kolesov, M. L. Lukashenko, A. M. Khudyakov, S. A. Kabakchi, and O. P. Arkhipov, “Radiolysis of ammonia in the first-loop coolant of reactors in floating power-generating units,” At. Energy 88, 368–372 (2000).CrossRef A. V. Bulanov, B. I. Kolesov, M. L. Lukashenko, A. M. Khudyakov, S. A. Kabakchi, and O. P. Arkhipov, “Radiolysis of ammonia in the first-loop coolant of reactors in floating power-generating units,” At. Energy 88, 368–372 (2000).CrossRef
3.
Zurück zum Zitat H. Karasawa, E. Ibe, S. Uchida, Y. Etoh, and T. Yasuda, “Radiation induced decomposition of nitrogen,” Radiat. Phys. Chem. 37, 193–197 (1991). H. Karasawa, E. Ibe, S. Uchida, Y. Etoh, and T. Yasuda, “Radiation induced decomposition of nitrogen,” Radiat. Phys. Chem. 37, 193–197 (1991).
4.
Zurück zum Zitat O. P. Arkhipov, V. L. Bugaenko, and S. A. Kabakchi, Software Tool MORAVA N2. Certification Passport, Registration No. 418 of July 15, 2017 (Rostekhnadzor RF, Moscow, 2017). https://www.secnrs.ru/expertise/software-review/Perechen’%20deistvuyushchikh%20attestatsionnykh%20pasportov%20PS%20(aprel’%202018). pdf. O. P. Arkhipov, V. L. Bugaenko, and S. A. Kabakchi, Software Tool MORAVA N2. Certification Passport, Registration No. 418 of July 15, 2017 (Rostekhnadzor RF, Moscow, 2017). https://​www.​secnrs.​ru/​expertise/​software-review/​Perechen’%20deistvuyushchikh%20attestatsionnykh%20pasportov%20PS%20(aprel’%202018). pdf.
5.
Zurück zum Zitat A. V. Luzakov, A. V. Bulanov, A. O. Verkhovskaya, B. I. Kolesov, G. P. Shovikov, and S. A. Kabakchi, “Radiation-chemical removal of corrosion hydrogen from VVER first-loop coolant,” At. Energy 105, 402–407 (2008).CrossRef A. V. Luzakov, A. V. Bulanov, A. O. Verkhovskaya, B. I. Kolesov, G. P. Shovikov, and S. A. Kabakchi, “Radiation-chemical removal of corrosion hydrogen from VVER first-loop coolant,” At. Energy 105, 402–407 (2008).CrossRef
6.
Zurück zum Zitat B. A. Kalin and A. A. Shmakov, “Behavior of hydrogen in zirconium reactor alloys,” Materialovedenie, No. 10, 50–55 (2005). B. A. Kalin and A. A. Shmakov, “Behavior of hydrogen in zirconium reactor alloys,” Materialovedenie, No. 10, 50–55 (2005).
Metadaten
Titel
Evaluation of the Corrosion State of Equipment of the First Circuit of Transport Nuclear Reactors Using the Parameters of Water Chemistry
verfasst von
S. A. Kabakchi
A. V. Luzakov
D. S. Urtenov
E. A. Katanova
I. A. Gasai
A. E. Verkhovskii
Publikationsdatum
01.03.2019
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 3/2019
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601519030030

Weitere Artikel der Ausgabe 3/2019

Thermal Engineering 3/2019 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Operating Experience with Fire Resistant Turbine Control Fluid at Ramin Power Plant

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Experimental Investigation of the Stability Limits for a Low-Emission, Two-Stage Combustor

    Premium Partner