Skip to main content
Erschienen in: Automatic Control and Computer Sciences 8/2020

01.12.2020

Self-Regulation of the Network Infrastructure of Cyberphysical Systems on the Basis of the Genome Assembly Problem

verfasst von: E. A. Zaitseva, D. S. Lavrova

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An approach to self-regulation of the network infrastructure of cyberphysical systems is proposed using the mathematical apparatus of de Bruijn graphs and overlap graphs employed in the bioinformatic problem of genome assembly. This approach reduces the time required for reconfiguring the system due to faster “linking” of the restored sections of the objective function.
Literatur
1.
Zurück zum Zitat Lavrova, D.S., Alekseev, I.V., and Shtyrkina, A.A., Security analysis based on controlling dependences of network traffic parameters by wavelet transformation, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 931–935.CrossRef Lavrova, D.S., Alekseev, I.V., and Shtyrkina, A.A., Security analysis based on controlling dependences of network traffic parameters by wavelet transformation, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 931–935.CrossRef
2.
Zurück zum Zitat Pavlenko, E. and Zegzhda, D., Sustainability of cyber-physical systems in the context of targeted destructive influences, IEEE Industrial Cyber-Physical Systems, 2018, pp. 830–834.CrossRef Pavlenko, E. and Zegzhda, D., Sustainability of cyber-physical systems in the context of targeted destructive influences, IEEE Industrial Cyber-Physical Systems, 2018, pp. 830–834.CrossRef
5.
Zurück zum Zitat Kalinin, M.O., Permanent protection of information systems with method of automated security and integrity control, SIN'10: Proceedings of the 3rd International Conference of Security of Information and Networks, 2010, pp. 118–123. https://doi.org/10.1145/1854099.1854125 Kalinin, M.O., Permanent protection of information systems with method of automated security and integrity control, SIN'10: Proceedings of the 3rd International Conference of Security of Information and Networks, 2010, pp. 118–123. https://​doi.​org/​10.​1145/​1854099.​1854125
6.
Zurück zum Zitat Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Clarifying integrity control at the trusted information environment, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 337–344.CrossRef Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Clarifying integrity control at the trusted information environment, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 337–344.CrossRef
7.
Zurück zum Zitat Stepanova, T., Kalinin, M., Baranov, P., and Zegzhda, D., Homogeneity analysis of power consumption for information security purposes, Proceedings of the 3rd International Conference of Security of Information and Networks, 2010, pp. 113–117. Stepanova, T., Kalinin, M., Baranov, P., and Zegzhda, D., Homogeneity analysis of power consumption for information security purposes, Proceedings of the 3rd International Conference of Security of Information and Networks, 2010, pp. 113–117.
8.
Zurück zum Zitat Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64. Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64.
9.
Zurück zum Zitat Zegzhda, D., Lavrova, D., and Poltavtseva, M., Multifractal security analysis of cyberphysical systems, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 2, pp. 196–204. Zegzhda, D., Lavrova, D., and Poltavtseva, M., Multifractal security analysis of cyberphysical systems, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 2, pp. 196–204.
11.
Zurück zum Zitat Pavlenko, E.Yu., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.CrossRef Pavlenko, E.Yu., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.CrossRef
12.
Zurück zum Zitat Lavrova, D.S., Zegzhda, D.P., and Zaitseva, E.A., Modeling of the network infrastructure of complex objects for solving the problem of countering cyber attacks, Vopr. Kiberbezop., 2019, no. 2, pp. 13–20. Lavrova, D.S., Zegzhda, D.P., and Zaitseva, E.A., Modeling of the network infrastructure of complex objects for solving the problem of countering cyber attacks, Vopr. Kiberbezop., 2019, no. 2, pp. 13–20.
13.
Zurück zum Zitat Kompo, F. and Pevzner, P., Genome Reconstruction: A Puzzle of a Billion Pieces. http://kvant.mccme.ru/ pdf/2014/2014-03.pdf. Kompo, F. and Pevzner, P., Genome Reconstruction: A Puzzle of a Billion Pieces. http://​kvant.​mccme.​ru/​ pdf/2014/2014-03.pdf.
14.
Zurück zum Zitat Sergushichev, A.A., et al., Combined application of de Bruyne graph, overlap graph, and microassembly for de novo genome assembly, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Inf., 2013, vol. 13, no. 2-2, pp. 51–57. Sergushichev, A.A., et al., Combined application of de Bruyne graph, overlap graph, and microassembly for de novo genome assembly, Izv. Sarat. Univ., Nov. Ser., Ser. Mat. Mekh. Inf., 2013, vol. 13, no. 2-2, pp. 51–57.
15.
Zurück zum Zitat Smart Grid Conceptual Model. http://www.science.smith.edu/~jcardell/Courses/EGR325/SmartGrid%20 Readings/Smart%20Grid%20Interop%20Panel%202010%20Panel.pdf. Smart Grid Conceptual Model. http://​www.​science.​smith.​edu/​~jcardell/​Courses/​EGR325/​SmartGrid%20 Readings/Smart%20Grid%20Interop%20Panel%202010%20Panel.pdf.
16.
Zurück zum Zitat Hartmann, T., et al., Generating realistic smart grid communication topologies based on real-data, 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, 2014, pp. 428–433. Hartmann, T., et al., Generating realistic smart grid communication topologies based on real-data, 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, 2014, pp. 428–433.
17.
Zurück zum Zitat Belenko, V., Krundyshev, V., and Kalinin, M., Intrusion detection for Internet of Things applying metagenome fast analysis, Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, 2019, pp. 129–135. Belenko, V., Krundyshev, V., and Kalinin, M., Intrusion detection for Internet of Things applying metagenome fast analysis, Proceedings of the 3rd World Conference on Smart Trends in Systems, Security and Sustainability, 2019, pp. 129–135.
18.
Zurück zum Zitat Markov, Y.A., Kalinin, M.O., and Zegzhda, D.P., A technique of abnormal behavior detection with genetic sequences alignment algorithms, International Conference on Enterprise Information Systems and Web Technologies 2010, 2010, pp. 104–110. Markov, Y.A., Kalinin, M.O., and Zegzhda, D.P., A technique of abnormal behavior detection with genetic sequences alignment algorithms, International Conference on Enterprise Information Systems and Web Technologies 2010, 2010, pp. 104–110.
19.
Zurück zum Zitat Markov, Y.A. and Kalinin, M.O., Intellectual intrusion detection with sequences alignment methods, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 217–228.CrossRef Markov, Y.A. and Kalinin, M.O., Intellectual intrusion detection with sequences alignment methods, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 217–228.CrossRef
22.
Zurück zum Zitat Konoplev, A.S. and Kalinin, M.O., Security policy verification in grid systems, Proceedings of the 6th International Conference on Security of Information and Networks, 2013, pp. 356–358. Konoplev, A.S. and Kalinin, M.O., Security policy verification in grid systems, Proceedings of the 6th International Conference on Security of Information and Networks, 2013, pp. 356–358.
23.
Zurück zum Zitat Kalinin, M.O. and Konoplev, A.S., Formalization of objectives of grid systems resources protection against unauthorized access, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2014, vol. 17, no. 3, pp. 272–277. Kalinin, M.O. and Konoplev, A.S., Formalization of objectives of grid systems resources protection against unauthorized access, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2014, vol. 17, no. 3, pp. 272–277.
24.
Zurück zum Zitat Konoplev, A.S. and Kalinin, M.O., Graphanalytical model of key distribution in networks with dynamic architecture, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 3, pp. 277–284. Konoplev, A.S. and Kalinin, M.O., Graphanalytical model of key distribution in networks with dynamic architecture, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 3, pp. 277–284.
Metadaten
Titel
Self-Regulation of the Network Infrastructure of Cyberphysical Systems on the Basis of the Genome Assembly Problem
verfasst von
E. A. Zaitseva
D. S. Lavrova
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 8/2020
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411620080350

Weitere Artikel der Ausgabe 8/2020

Automatic Control and Computer Sciences 8/2020 Zur Ausgabe