Skip to main content
Erschienen in: Steel in Translation 6/2019

01.06.2019

Plasticity and Deformability of Alloy Rail Steels at Rolling Temperatures

verfasst von: A. A. Umanskii, A. V. Golovatenko, A. S. Simachev, V. V. Dorofeev, T. N. Oskolkova

Erschienen in: Steel in Translation | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract—The influence of the rolling temperature and speed on the plasticity and deformability within continuous-cast billet of E76KhF and E76KhSF alloy rail steels is studied experimentally. The results indicate a complex dependence of the plasticity of E76KhF steel on the deformation temperature. In particular, for the surface layers of continuous-cast billet, the plasticity declines markedly in the range 1025–1075°C. That is not the case for the central region of the billet. The results for E76KhF steel indicate that the absolute plasticity declines considerably on moving away from the surface. This may be attributed to the larger grains in the steel and the higher concentration of nonmetallic impurities in the central zone, as confirmed by metallographic data. In particular, the mean grain size at the center of the deformed continuous-cast billet is 1.3–2.1 times greater than in the surface layer. The central zone is characterized by high concentrations of nondeforming silicate inclusions Al2O3 ⋅ SiO2, FeO ⋅ SiO2, and MnO ⋅ SiO2, which greatly impair the billet plasticity. Such inclusions are absent from the surface zone of the billet. With increase in deformation temperature of E76KhSF rail steel, the resistance to plastic deformation declines exponentially. The absolute resistance to deformation declines on moving away from the billet surface, once again on account of the larger grains in the steel and the higher concentration of nonmetallic impurities in the central zone. Decrease in the resistance to deformation from the surface layers to the center of the billet is observed at any strain rate. However, the absolute resistance to deformation increases considerably with increase in the strain rate from 1 to 10 s–1. Mathematical analysis of the experimental data yields regression equations that may be used in practice to predict the plastic and deformational properties of E76KhF and E76KhSF alloy rail steels, in specified rolling conditions. Those equations provide the basis for the development of new billet-heating conditions in rolling and new systems for rail rolling. Their validity is confirmed by industrial trials of new production conditions for rails on the universal rail and beam mill at AO EVRAZ ZSMK.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dimatteo, A., Lovicu, G., DeSanctis, M., and Valentini, R., Effect of temperature and microstructure on hot ductility properties of a boron steel, Proc. 4th Int. Conf. on Crack Paths (CP 2012), Gaeta, 2012, pp. 131–138. Dimatteo, A., Lovicu, G., DeSanctis, M., and Valentini, R., Effect of temperature and microstructure on hot ductility properties of a boron steel, Proc. 4th Int. Conf. on Crack Paths (CP 2012), Gaeta, 2012, pp. 131–138.
2.
Zurück zum Zitat Jansto, S.G., Effect of melting and casting parameters on the hot ductility behavior of Nb-bearing beams, billets and slabs, Steel Transl., 2011, vol. 41, no. 9, pp. 711–718.CrossRef Jansto, S.G., Effect of melting and casting parameters on the hot ductility behavior of Nb-bearing beams, billets and slabs, Steel Transl., 2011, vol. 41, no. 9, pp. 711–718.CrossRef
3.
Zurück zum Zitat López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., and Cabrera, J.M., Hot ductility behavior of boron microalloyed steels, Mater. Sci. Eng., A, 2007, vols. 460–461, pp. 464–470.CrossRef López-Chipres, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., and Cabrera, J.M., Hot ductility behavior of boron microalloyed steels, Mater. Sci. Eng., A, 2007, vols. 460–461, pp. 464–470.CrossRef
4.
Zurück zum Zitat Banks, K.M., Tuling, A., Klinkenberg, C., and Mintz, B., The influence of Ti on the hot ductility of Nb containing steels, Mater. Sci. Technol., 2011, vol. 27, no. 2, pp. 537–545.CrossRef Banks, K.M., Tuling, A., Klinkenberg, C., and Mintz, B., The influence of Ti on the hot ductility of Nb containing steels, Mater. Sci. Technol., 2011, vol. 27, no. 2, pp. 537–545.CrossRef
5.
Zurück zum Zitat Mintz, B., The influence of composition on the hot ductility of steel and to the problem of transverse cracking, ISIJ Int., 1999, vol. 39, no. 9, pp. 833–855.CrossRef Mintz, B., The influence of composition on the hot ductility of steel and to the problem of transverse cracking, ISIJ Int., 1999, vol. 39, no. 9, pp. 833–855.CrossRef
6.
Zurück zum Zitat Yang, B., Degischer, H.P., Presslinger, H., Xia, G., and Reisinger, P., Influence of chemical composition on high temperature tensile properties of carbon steels, BHM, Berg-Huettenmaenn. Monatsh., 2005, vol. 150, no. 9, pp. 313–320. Yang, B., Degischer, H.P., Presslinger, H., Xia, G., and Reisinger, P., Influence of chemical composition on high temperature tensile properties of carbon steels, BHM, Berg-Huettenmaenn. Monatsh., 2005, vol. 150, no. 9, pp. 313–320.
7.
Zurück zum Zitat Crowther, D.N., The effects of microalloying elements on cracking during continuous casting, Proc. Int. Symp. on Vanadium Application Technology, Beijing: Vanitec, 2001, pp. 99–131. Crowther, D.N., The effects of microalloying elements on cracking during continuous casting, Proc. Int. Symp. on Vanadium Application Technology, Beijing: Vanitec, 2001, pp. 99–131.
8.
Zurück zum Zitat Gladkovskii, S.V., Potapov, A.I., and Lepikhin, S.V., Study of resistance to deformation of EP679 martensitic-aging steel, Diagn., Resour. Mech. Mater. Struct., 2015, no. 4, pp. 18–28. Gladkovskii, S.V., Potapov, A.I., and Lepikhin, S.V., Study of resistance to deformation of EP679 martensitic-aging steel, Diagn., Resour. Mech. Mater. Struct., 2015, no. 4, pp. 18–28.
9.
Zurück zum Zitat Konovalov, A.V., Smirnov, A.S., Parshin, V.S., Dronov, A.I., Karamyshev, A.P., Nekrasov, I.I., Fedulov, A.A., and Serebryakov, A.V., Study of the resistance of steels 18KhMFB and 18Kh3MFB to hot deformation, Metallurgist, 2015, vol. 59, no. 11, pp. 1118–1121.CrossRef Konovalov, A.V., Smirnov, A.S., Parshin, V.S., Dronov, A.I., Karamyshev, A.P., Nekrasov, I.I., Fedulov, A.A., and Serebryakov, A.V., Study of the resistance of steels 18KhMFB and 18Kh3MFB to hot deformation, Metallurgist, 2015, vol. 59, no. 11, pp. 1118–1121.CrossRef
10.
Zurück zum Zitat Konovalov, A.V. and Smirnov, A.S., Viscoplastic model for the strain resistance of 08Kh18N10T steel at a hot-deformation temperature, Russ. Metall. (Engl. Transl.), 2008, vol. 2008, no. 2, pp. 138–141.CrossRef Konovalov, A.V. and Smirnov, A.S., Viscoplastic model for the strain resistance of 08Kh18N10T steel at a hot-deformation temperature, Russ. Metall. (Engl. Transl.), 2008, vol. 2008, no. 2, pp. 138–141.CrossRef
11.
Zurück zum Zitat Hildenbrand, A., Molinari, A., and Baczynski, J., Self-consistent poly crystal modeling of dynamic recrystallization during the shear deformation of a Ti IF steel, Acta Mater., 1999, vol. 47, no. 2, pp. 447–460.CrossRef Hildenbrand, A., Molinari, A., and Baczynski, J., Self-consistent poly crystal modeling of dynamic recrystallization during the shear deformation of a Ti IF steel, Acta Mater., 1999, vol. 47, no. 2, pp. 447–460.CrossRef
12.
Zurück zum Zitat Marx, E., Simulation of primary recrystallization, Acta Mater., 1999, vol. 47, no. 4, pp. 1219–1230. Marx, E., Simulation of primary recrystallization, Acta Mater., 1999, vol. 47, no. 4, pp. 1219–1230.
13.
Zurück zum Zitat Manonukul, A. and Dunne, N., Dynamic recrystallization, Acta Mater., 1999, vol. 47, no. 7, pp. 4339–4354.CrossRef Manonukul, A. and Dunne, N., Dynamic recrystallization, Acta Mater., 1999, vol. 47, no. 7, pp. 4339–4354.CrossRef
14.
Zurück zum Zitat Ding, R. and Guo, Z.X., Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach, Comput. Mater. Sci., 2002, vol. 23, pp. 209–218.CrossRef Ding, R. and Guo, Z.X., Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach, Comput. Mater. Sci., 2002, vol. 23, pp. 209–218.CrossRef
15.
Zurück zum Zitat Goetz, R.L. and Seetharaman, V., Modeling dynamic recrystallization using cellular automata, Scr. Mater., 1998, vol. 38, no. 3, pp. 405–413.CrossRef Goetz, R.L. and Seetharaman, V., Modeling dynamic recrystallization using cellular automata, Scr. Mater., 1998, vol. 38, no. 3, pp. 405–413.CrossRef
16.
Zurück zum Zitat Getmanets, V.V. and Shevchuk, V.Ya., Ratsional’nye rezhimy raboty blyuminga (Rational Modes of Blooming), Moscow: Metallurgiya, 1990. Getmanets, V.V. and Shevchuk, V.Ya., Ratsional’nye rezhimy raboty blyuminga (Rational Modes of Blooming), Moscow: Metallurgiya, 1990.
17.
Zurück zum Zitat Chekmarev, A.P., Pavlov, V.L., Meleshko, V.I., and Tokarev, V.A., Teoriya prokatki krupnykh slitkov (Theory of Large Ingots Rolling), Moscow: Metallurgiya, 1968. Chekmarev, A.P., Pavlov, V.L., Meleshko, V.I., and Tokarev, V.A., Teoriya prokatki krupnykh slitkov (Theory of Large Ingots Rolling), Moscow: Metallurgiya, 1968.
18.
Zurück zum Zitat Dzugutov, M.Ya., Plastichnost’ i deformiruemost’ vysokolegirovannykh stalei i splavov (Plasticity and deformability of high-alloyed steels and alloys), Moscow: Metallurgiya, 1990. Dzugutov, M.Ya., Plastichnost’ i deformiruemost’ vysokolegirovannykh stalei i splavov (Plasticity and deformability of high-alloyed steels and alloys), Moscow: Metallurgiya, 1990.
19.
Zurück zum Zitat Birza, V.V. and Birza, A.V., Steel classification according to plasticity limit under forming, Stal’, 2010, no. 7, pp. 66–71. Birza, V.V. and Birza, A.V., Steel classification according to plasticity limit under forming, Stal’, 2010, no. 7, pp. 66–71.
20.
Zurück zum Zitat Simachev, A.S., Oskolkova, T.N., and Temlyantsev, M.V., Influence of nonmetallic inclusions in rail steel on the high-temperature plasticity, Steel Transl., 2016, vol. 46, no. 2, pp. 112–114.CrossRef Simachev, A.S., Oskolkova, T.N., and Temlyantsev, M.V., Influence of nonmetallic inclusions in rail steel on the high-temperature plasticity, Steel Transl., 2016, vol. 46, no. 2, pp. 112–114.CrossRef
21.
Zurück zum Zitat Golubtsov, V.A., Shubya, L.G., and Usmanov, P.G., Out-of-furnace processing and modification of steel, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2006, no. 11, pp. 47–51. Golubtsov, V.A., Shubya, L.G., and Usmanov, P.G., Out-of-furnace processing and modification of steel, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2006, no. 11, pp. 47–51.
22.
Zurück zum Zitat Gubenko, S.I., Parusov, V.V., and Derevyanchenko, I.V., Nemetallicheskie vklyucheniya v stali (Non-Metallic Inclusions in Steel), Dnepropetrovsk: Art Press, 2005. Gubenko, S.I., Parusov, V.V., and Derevyanchenko, I.V., Nemetallicheskie vklyucheniya v stali (Non-Metallic Inclusions in Steel), Dnepropetrovsk: Art Press, 2005.
23.
Zurück zum Zitat Umanskii, A.A., Golovatenko, A.V., and Kadykov, V.N., Development of theoretical basis of determining energy-power parameters of rolling at implementation of new grades of rail steel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 10, pp. 804–810. Umanskii, A.A., Golovatenko, A.V., and Kadykov, V.N., Development of theoretical basis of determining energy-power parameters of rolling at implementation of new grades of rail steel, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 10, pp. 804–810.
24.
Zurück zum Zitat Umansky, A.A., Dumova, L.V., Golovatenko, A.V., and Kadykov, V.N., Development of mathematical models and methods for calculation of rail steel deformation resistance of various chemical composition, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150. https://iopscience.iop.org/article/10.1088/1757- 899X/150/1/012029/pdf. Accessed December 20, 2018. Umansky, A.A., Dumova, L.V., Golovatenko, A.V., and Kadykov, V.N., Development of mathematical models and methods for calculation of rail steel deformation resistance of various chemical composition, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 150. https://​iopscience.​iop.​org/​article/​10.​1088/​1757- 899X/150/1/012029/pdf. Accessed December 20, 2018.
25.
Zurück zum Zitat Umanskii, A.A., Golovatenko, A.V., and Kadykov, V.N., Improving rail rolling modes in crimping stands of the universal rail and structural steel mill, Chern. Met., 2016, no. 11, pp. 16–21. Umanskii, A.A., Golovatenko, A.V., and Kadykov, V.N., Improving rail rolling modes in crimping stands of the universal rail and structural steel mill, Chern. Met., 2016, no. 11, pp. 16–21.
26.
Zurück zum Zitat Gulyaev, A.P. and Gulyaev, A.A., Metallovedenie (Metal Science), Moscow: Al’yans, 2012. Gulyaev, A.P. and Gulyaev, A.A., Metallovedenie (Metal Science), Moscow: Al’yans, 2012.
27.
Zurück zum Zitat Lakhtin, Yu.M. and Leont’eva, V.P., Materialovedenie (Materials Science), Moscow: Al’yans, 2013. Lakhtin, Yu.M. and Leont’eva, V.P., Materialovedenie (Materials Science), Moscow: Al’yans, 2013.
Metadaten
Titel
Plasticity and Deformability of Alloy Rail Steels at Rolling Temperatures
verfasst von
A. A. Umanskii
A. V. Golovatenko
A. S. Simachev
V. V. Dorofeev
T. N. Oskolkova
Publikationsdatum
01.06.2019
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 6/2019
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219060111

Weitere Artikel der Ausgabe 6/2019

Steel in Translation 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.