Skip to main content
Erschienen in: Steel in Translation 6/2019

01.06.2019

Performance of Surface Layers Applied by New Powder Wire in Highly Abrasive Wear

verfasst von: R. E. Kryukov, A. A. Usol’tsev, N. A. Kozyrev, L. P. Bashchenko, I. V. Osetkovskii

Erschienen in: Steel in Translation | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of chromium (in high concentrations) as a reducing agent in the manufacture of Fe–C–Si–Mn–Cr–Ni–Mo powder wire is studied. Metal layers are applied to St3 steel plates under An-26S flux, with preliminary heating of the basic metal to 250–300°C. Powder wire (diameter 5 mm) manufactured on a laboratory machine is applied by means of an ASAW-1250 welding system, in the following conditions: current 420–520 A; voltage 28–32 V; welding rate 7.2–9.0 m/h. After surfacing, the metal is cooled to room temperature. In producing the powder wire, the filler consists of PZhV1 iron powder (State Standard GOST 9849–86); FS75 ferrosilicon powder (State Standard GOST 1415–93); FKh900A high-carbon ferrochrome powder (State Standard GOST 4757–91); FMn78(A) carbon ferromanganese (State Standard GOST 4755–91); PNK-1L5 nickel powder (State Standard GOST 9722–97); FMo60 ferromolybdenum powder (State Standard GOST 4759–91); FV50U0.6 ferrovanadium powder (State Standard GOST 27130–94); PK-1U cobalt powder (State Standard GOST 9721–79); and PVN tungsten powder (Technical Specifications TU 48-19-72–92). Within the chosen concentration ranges, carbon, manganese, chromium, molybdenum, nickel, and to some extent vanadium increase the hardness of the applied layer and also decrease the wear rate of the samples. The low viscosity of the matrix prevents the retention of tungsten carbide at the surface. Consequently, wear occurs not by uniform abrasion of the surface but by the extraction of high-strength carbon particles from the matrix. As a result, new cracks are formed in the matrix, which accelerates its wear. Multifactorial correlational analysis yields dependences of the hardness and wear resistance of the applied layer on the mass content of the elements in the Fe–C–Si–Mn–Cr–Ni–Mo powder wire. These dependences may be used to predict the hardness and wear resistance of the applied layer with change in its chemical composition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andrushchenko, M.I., Kulikovskii, R.A., Berezhnyi, S.P., and Sopil’nyak, O.B., Ability to self-hardening of the friction surface and wear resistance of the deposited metal in abrasive wear conditions, Novye Mater. Tekhnol. Metall. Mashinostr., 2009, no. 1, pp. 30–37. Andrushchenko, M.I., Kulikovskii, R.A., Berezhnyi, S.P., and Sopil’nyak, O.B., Ability to self-hardening of the friction surface and wear resistance of the deposited metal in abrasive wear conditions, Novye Mater. Tekhnol. Metall. Mashinostr., 2009, no. 1, pp. 30–37.
2.
Zurück zum Zitat Kirchgaßner, M., Badisch, E., and Franek, F., Behavior of iron-based hardfacing alloys under abrasion and impact, Wear, 2008, vol. 265, nos. 5–6, pp. 772–779.CrossRef Kirchgaßner, M., Badisch, E., and Franek, F., Behavior of iron-based hardfacing alloys under abrasion and impact, Wear, 2008, vol. 265, nos. 5–6, pp. 772–779.CrossRef
3.
Zurück zum Zitat Klimpel, A., Dobrzanski, L.A., Janicki, D., and Lisiecki, A., Abrasion resistance of GMA metal cored wires surfaced deposits, Mater. Process. Technol., 2005, vols. 164–165, pp. 1056–1061.CrossRef Klimpel, A., Dobrzanski, L.A., Janicki, D., and Lisiecki, A., Abrasion resistance of GMA metal cored wires surfaced deposits, Mater. Process. Technol., 2005, vols. 164–165, pp. 1056–1061.CrossRef
4.
Zurück zum Zitat Wang, Q. and Li, X., Effects of Nb, V, and W on microstructure and abrasion resistance of Fe–Cr–C hardfacing alloys, Weld. J., 2010, vol. 89, no. 7, pp. 133–139. Wang, Q. and Li, X., Effects of Nb, V, and W on microstructure and abrasion resistance of Fe–Cr–C hardfacing alloys, Weld. J., 2010, vol. 89, no. 7, pp. 133–139.
5.
Zurück zum Zitat Filippov, M.A., Shumyakov, V.I., Balin, S.A., Zhilin, A.S., Lehchilo, V.V., and Rimer, G.A., Structure and wear resistance of deposited alloys based on metastable chromium-carbon austenite, Weld. Int., 2015, vol. 29, no. 10, pp. 819–822.CrossRef Filippov, M.A., Shumyakov, V.I., Balin, S.A., Zhilin, A.S., Lehchilo, V.V., and Rimer, G.A., Structure and wear resistance of deposited alloys based on metastable chromium-carbon austenite, Weld. Int., 2015, vol. 29, no. 10, pp. 819–822.CrossRef
6.
Zurück zum Zitat Liu, D.S., Liu, R.P., and Wei, Y.H., Influence of tungsten on microstructure and wear resistance of iron base hardfacing alloy, Mater. Sci. Technol., 2014, vol. 30, no. 3, pp. 316–322.CrossRef Liu, D.S., Liu, R.P., and Wei, Y.H., Influence of tungsten on microstructure and wear resistance of iron base hardfacing alloy, Mater. Sci. Technol., 2014, vol. 30, no. 3, pp. 316–322.CrossRef
7.
Zurück zum Zitat Lim, S.C., Gupta, M., Goh, Y.S., and Seow, K.C., Wear resistant WC–Co composite hard coatings, Surf. Eng., 1997, vol. 13, no. 3, pp. 247–250.CrossRef Lim, S.C., Gupta, M., Goh, Y.S., and Seow, K.C., Wear resistant WC–Co composite hard coatings, Surf. Eng., 1997, vol. 13, no. 3, pp. 247–250.CrossRef
8.
Zurück zum Zitat Deng, X.T., Fu, T.L., Wang, Z.D., Misra, R.D.K., and Wang, G.D., Epsilon carbide precipitation and wear behavior of low alloy wear resistant steels, Mater. Sci. Technol., 2016, vol. 32, no. 4, pp. 320–327.CrossRef Deng, X.T., Fu, T.L., Wang, Z.D., Misra, R.D.K., and Wang, G.D., Epsilon carbide precipitation and wear behavior of low alloy wear resistant steels, Mater. Sci. Technol., 2016, vol. 32, no. 4, pp. 320–327.CrossRef
9.
Zurück zum Zitat Mendez, P.F., Barnes, N., Bell, K., Borle, S.D., Gajapathi, S.S., Guest, S.D., Izadi, H., Gol, A.K., and Wood, G., Welding processes for wear resistant overlays, J. Manuf. Process., 2014, vol. 16, no. 1, pp. 4–25.CrossRef Mendez, P.F., Barnes, N., Bell, K., Borle, S.D., Gajapathi, S.S., Guest, S.D., Izadi, H., Gol, A.K., and Wood, G., Welding processes for wear resistant overlays, J. Manuf. Process., 2014, vol. 16, no. 1, pp. 4–25.CrossRef
10.
Zurück zum Zitat Teplyashin, M.V., Komkov, V.G., and Starienko, V.A., Development of a sparingly alloyed alloy for the recovery of hammer mills, Uch. Zametki Tikhookean. Gos. Univ., 2013, vol. 4, no. 4, pp. 1543–1549. Teplyashin, M.V., Komkov, V.G., and Starienko, V.A., Development of a sparingly alloyed alloy for the recovery of hammer mills, Uch. Zametki Tikhookean. Gos. Univ., 2013, vol. 4, no. 4, pp. 1543–1549.
11.
Zurück zum Zitat Korobov, Yu.S., Filippov, M.A., Makarov, A.V., Verkhorubov, V.S., Nevezhin, S.V., and Kashfullin, A.M., Resistance of deposited coatings with the structure of metastable austenite against abrasive and adhesive wear, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, vol. 17, no. 2, pp. 224–230. Korobov, Yu.S., Filippov, M.A., Makarov, A.V., Verkhorubov, V.S., Nevezhin, S.V., and Kashfullin, A.M., Resistance of deposited coatings with the structure of metastable austenite against abrasive and adhesive wear, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, vol. 17, no. 2, pp. 224–230.
12.
Zurück zum Zitat Nefed’ev, S.P., Dema, R.R., and Kotenko, D.A., Abrasive and shock-abrasive wear resistance of hard welded coatings, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2015, vol. 15, no 1, pp. 103–106. Nefed’ev, S.P., Dema, R.R., and Kotenko, D.A., Abrasive and shock-abrasive wear resistance of hard welded coatings, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2015, vol. 15, no 1, pp. 103–106.
13.
Zurück zum Zitat Malinov, V.L., Regression analysis of the dependences of wear resistance on chemical composition of Fe–Cr–Mn–V–C based metal in conditions of abrasive and impact-abrasive wear, Vestn. Priazovsk. Gos. Tekhn. Univ., Ser.: Tekh. Nauki, 2011, vol. 23, no. 2, pp. 107–112. Malinov, V.L., Regression analysis of the dependences of wear resistance on chemical composition of Fe–Cr–Mn–V–C based metal in conditions of abrasive and impact-abrasive wear, Vestn. Priazovsk. Gos. Tekhn. Univ., Ser.: Tekh. Nauki, 2011, vol. 23, no. 2, pp. 107–112.
14.
Zurück zum Zitat Yurchenko, A.N., Panov, D.O., and Simonov, Yu.N., Change in microstructure of the sparingly alloyed steel depending on the rate of continuous cooling and isothermal holding temperature, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mashinostr., Materialoved., 2017, vol. 19, no. 1, pp. 98–110. Yurchenko, A.N., Panov, D.O., and Simonov, Yu.N., Change in microstructure of the sparingly alloyed steel depending on the rate of continuous cooling and isothermal holding temperature, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mashinostr., Materialoved., 2017, vol. 19, no. 1, pp. 98–110.
15.
Zurück zum Zitat Ma, H.R., Chen, X.Y., Li, J.W., Chang, C.T., Wang, G., Li, H., Wang, X.M., and Li, R.W., Fe-based amorphous coating with high corrosion and wear resistance, Surf. Eng., 2017, vol. 33, no. 1, pp. 1–7.CrossRef Ma, H.R., Chen, X.Y., Li, J.W., Chang, C.T., Wang, G., Li, H., Wang, X.M., and Li, R.W., Fe-based amorphous coating with high corrosion and wear resistance, Surf. Eng., 2017, vol. 33, no. 1, pp. 1–7.CrossRef
16.
Zurück zum Zitat Gusev, A.I., Kibko, N.V., Popova, M.V., Kozyrev, N.A., and Osetkovskii, I.V., Surfacing of details of mining equipment by powder wires of C–Si–Mn–Mo–V–B and C–Si–Mn–Cr–Mo–V systems, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 4, pp. 318–323. Gusev, A.I., Kibko, N.V., Popova, M.V., Kozyrev, N.A., and Osetkovskii, I.V., Surfacing of details of mining equipment by powder wires of C–Si–Mn–Mo–V–B and C–Si–Mn–Cr–Mo–V systems, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2017, vol. 60, no. 4, pp. 318–323.
17.
Zurück zum Zitat Gusev, A.I., Usol’tsev, A.A., Kozyrev, N.A., Kibko, N.V., and Bashchenko, L.P., Development of flux-cored wire for surfacing of parts operating under conditions of wear, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 61, no. 11, pp. 898–906.CrossRef Gusev, A.I., Usol’tsev, A.A., Kozyrev, N.A., Kibko, N.V., and Bashchenko, L.P., Development of flux-cored wire for surfacing of parts operating under conditions of wear, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 61, no. 11, pp. 898–906.CrossRef
18.
Zurück zum Zitat Kozyrev, N.A., Kryukov, R.E., Usol’tsev, A.A., Umanskii, A.A., and Sokolov, P.D., Development of new cored wires for surfacing. Flux cored wires using carbon fluoride materials for rolling mill repair, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2018, no. 1 (1417), pp. 77–86. Kozyrev, N.A., Kryukov, R.E., Usol’tsev, A.A., Umanskii, A.A., and Sokolov, P.D., Development of new cored wires for surfacing. Flux cored wires using carbon fluoride materials for rolling mill repair, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2018, no. 1 (1417), pp. 77–86.
19.
Zurück zum Zitat Osetkovsky, I.V., Kozyrev, N.A., Kryukov, R.E., Usoltsev, A.A., and Gusev, A.I., Development of a wear-resistant flux cored wire of Fe–C–Si–Mn–Cr–Ni–Mo–V system for deposit welding of mining equipment parts, Int. Sci.-Res. Conf. on Knowledge-Based Technologies in Development and Utilization of Mineral Resources (KTDMUR’2017), June 6–9 2017, Novokuznetsk, 2017, vol. 84, pp. 1–7. Osetkovsky, I.V., Kozyrev, N.A., Kryukov, R.E., Usoltsev, A.A., and Gusev, A.I., Development of a wear-resistant flux cored wire of Fe–C–Si–Mn–Cr–Ni–Mo–V system for deposit welding of mining equipment parts, Int. Sci.-Res. Conf. on Knowledge-Based Technologies in Development and Utilization of Mineral Resources (KTDMUR’2017), June 6–9 2017, Novokuznetsk, 2017, vol. 84, pp. 1–7.
20.
Zurück zum Zitat Venttsel’, E.S. and Ovcharov, L.A., Teoriya veroyatnostei i ee inzhenernye prilozheniya (Probability Theory and Its Engineering Applications), Moscow: Akademiya, 2003. Venttsel’, E.S. and Ovcharov, L.A., Teoriya veroyatnostei i ee inzhenernye prilozheniya (Probability Theory and Its Engineering Applications), Moscow: Akademiya, 2003.
Metadaten
Titel
Performance of Surface Layers Applied by New Powder Wire in Highly Abrasive Wear
verfasst von
R. E. Kryukov
A. A. Usol’tsev
N. A. Kozyrev
L. P. Bashchenko
I. V. Osetkovskii
Publikationsdatum
01.06.2019
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 6/2019
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S096709121906007X

Weitere Artikel der Ausgabe 6/2019

Steel in Translation 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.