Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2016

01.12.2016

Linking dynamics of the inhibitory network to the input structure

verfasst von: Maxim Komarov, Maxim Bazhenov

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Assisi, C., & Bazhenov, M. (2012). Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system. Frontiers in neuroengineering, 5(7). Assisi, C., & Bazhenov, M. (2012). Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system. Frontiers in neuroengineering, 5(7).
Zurück zum Zitat Assisi, C., Stopfer, M., & Bazhenov, M. (2011). Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning. Neuron, 69(2), 373–86.PubMedPubMedCentralCrossRef Assisi, C., Stopfer, M., & Bazhenov, M. (2011). Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning. Neuron, 69(2), 373–86.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bal, T., & Mccormick, D.A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticular thalami in vitro: a mammalian pacemaker. Journal of Physiology, 468, 669–691.PubMedPubMedCentralCrossRef Bal, T., & Mccormick, D.A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticular thalami in vitro: a mammalian pacemaker. Journal of Physiology, 468, 669–691.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bazhenov, M., & Stopfer, M. (2010). Forward and back: motifs of inhibition in olfactory processing. Neuron, 67, 357–358.PubMedCrossRef Bazhenov, M., & Stopfer, M. (2010). Forward and back: motifs of inhibition in olfactory processing. Neuron, 67, 357–358.PubMedCrossRef
Zurück zum Zitat Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (1999). Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nature neuroscience, 2(2), 168–174.PubMedCrossRef Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (1999). Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nature neuroscience, 2(2), 168–174.PubMedCrossRef
Zurück zum Zitat Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D., Sejnowski, T.J., & Laurent, G. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron, 30(2), 569–81.PubMedPubMedCentralCrossRef Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D., Sejnowski, T.J., & Laurent, G. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron, 30(2), 569–81.PubMedPubMedCentralCrossRef
Zurück zum Zitat Beierlein, M., Gibson, J.R., & Connors, B.W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophysiology, 90(2003), 2987–3000.PubMedCrossRef Beierlein, M., Gibson, J.R., & Connors, B.W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophysiology, 90(2003), 2987–3000.PubMedCrossRef
Zurück zum Zitat Beggs, J.M. (2004). Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures. Journal of Neuroscience, 24(22), 5216–5229.PubMedCrossRef Beggs, J.M. (2004). Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures. Journal of Neuroscience, 24(22), 5216–5229.PubMedCrossRef
Zurück zum Zitat Beggs, J.M., & Plenz, D. (2003). Neuronal Avalanches in Neocortical Circuits. The Journal of Neuroscience, 23(35), 11167–11177.PubMed Beggs, J.M., & Plenz, D. (2003). Neuronal Avalanches in Neocortical Circuits. The Journal of Neuroscience, 23(35), 11167–11177.PubMed
Zurück zum Zitat Belykh, I., & Shilnikov, A. (2008). When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons. Physical Review Letters, 101(7), 078102.PubMedCrossRef Belykh, I., & Shilnikov, A. (2008). When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons. Physical Review Letters, 101(7), 078102.PubMedCrossRef
Zurück zum Zitat Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural computation, 15(11), 2523–64.PubMedCrossRef Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural computation, 15(11), 2523–64.PubMedCrossRef
Zurück zum Zitat Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., & et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal network. Science (New York, N.Y.), 326, 1419–1424.CrossRef Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., & et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal network. Science (New York, N.Y.), 326, 1419–1424.CrossRef
Zurück zum Zitat Bouyer, J.J., Montaron, M.F., Vahnėe, J M, Albert, M.P., & Rougeul, A. (1987). Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22(3), 863–869.PubMedCrossRef Bouyer, J.J., Montaron, M.F., Vahnėe, J M, Albert, M.P., & Rougeul, A. (1987). Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22(3), 863–869.PubMedCrossRef
Zurück zum Zitat Buhl, E.H., Tamás, G, & Fisahn, A. (1998). Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. The Journal of physiology, 513, 117–126.PubMedPubMedCentralCrossRef Buhl, E.H., Tamás, G, & Fisahn, A. (1998). Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. The Journal of physiology, 513, 117–126.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cinelli, A.R., & Kauer, J.S. (1992). Voltage-sensitive dyes and functional activity in the olfactory pathway. Annual review of neuroscience, 15, 321–351.PubMedCrossRef Cinelli, A.R., & Kauer, J.S. (1992). Voltage-sensitive dyes and functional activity in the olfactory pathway. Annual review of neuroscience, 15, 321–351.PubMedCrossRef
Zurück zum Zitat Cinelli, A.R., Hamilton, K.A., & Kauer, J.S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of neurophysiology, 73(5), 2053–2071.PubMed Cinelli, A.R., Hamilton, K.A., & Kauer, J.S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of neurophysiology, 73(5), 2053–2071.PubMed
Zurück zum Zitat Collins, J.J., & bifurcation, Stewart IN Symmetry-breaking (1992). A possible mechanism for 2:1 frequency locking in animal locomotion. J. Math. Biol., 30, 827–838.PubMedCrossRef Collins, J.J., & bifurcation, Stewart IN Symmetry-breaking (1992). A possible mechanism for 2:1 frequency locking in animal locomotion. J. Math. Biol., 30, 827–838.PubMedCrossRef
Zurück zum Zitat Daun, S., Rubin, J.E., & Rybak, I.A (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.PubMedPubMedCentralCrossRef Daun, S., Rubin, J.E., & Rybak, I.A (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.PubMedPubMedCentralCrossRef
Zurück zum Zitat Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature reviews Neuroscience, 11(2), 114–126.PubMed Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature reviews Neuroscience, 11(2), 114–126.PubMed
Zurück zum Zitat Diesmann, M., Gewaltig, M.O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.PubMedCrossRef Diesmann, M., Gewaltig, M.O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.PubMedCrossRef
Zurück zum Zitat Ermentrout, B. (1992). Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(1), 415–431.CrossRef Ermentrout, B. (1992). Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(1), 415–431.CrossRef
Zurück zum Zitat Ermentrout, G.B., & Kopell, N. (1994). Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators. SIAM Journal on Applied Mathematics, 54, 478–507.CrossRef Ermentrout, G.B., & Kopell, N. (1994). Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators. SIAM Journal on Applied Mathematics, 54, 478–507.CrossRef
Zurück zum Zitat Freund, T.F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMedCrossRef Freund, T.F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMedCrossRef
Zurück zum Zitat Friedrich, R.W., & Stopfer, M. (2001). Recent dynamics in olfactory population coding. Current Opinion in Neurobiology, 11, 468–474.PubMedCrossRef Friedrich, R.W., & Stopfer, M. (2001). Recent dynamics in olfactory population coding. Current Opinion in Neurobiology, 11, 468–474.PubMedCrossRef
Zurück zum Zitat Friedrich, R.W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of neurophysiology, 91(6), 2658–69.PubMedCrossRef Friedrich, R.W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of neurophysiology, 91(6), 2658–69.PubMedCrossRef
Zurück zum Zitat Foster, D.J., & Ma, W. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683.PubMedCrossRef Foster, D.J., & Ma, W. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683.PubMedCrossRef
Zurück zum Zitat Gabriel, A., & Eckhorn, R. (2003). A multi-channel correlation method detects traveling γ-waves in monkey visual cortex. Journal of Neuroscience Methods, 131(1-2), 171–184.PubMedCrossRef Gabriel, A., & Eckhorn, R. (2003). A multi-channel correlation method detects traveling γ-waves in monkey visual cortex. Journal of Neuroscience Methods, 131(1-2), 171–184.PubMedCrossRef
Zurück zum Zitat Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Reviews Neuroscience, 4(7), 573–586.PubMedCrossRef Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Reviews Neuroscience, 4(7), 573–586.PubMedCrossRef
Zurück zum Zitat Golomb, D., & Ermentrout, G.B. (2001). Bistability in pulse propagation in networks of excitatory and inhibitory populations. Physical Review Letters, 86(18), 4179–4182.PubMedCrossRef Golomb, D., & Ermentrout, G.B. (2001). Bistability in pulse propagation in networks of excitatory and inhibitory populations. Physical Review Letters, 86(18), 4179–4182.PubMedCrossRef
Zurück zum Zitat Golomb, D., Wang, X.J., & Rinzel, J. (1994). Synchronization Properties of Spindle Oscillations in a Thalamic Reticular Nucleus Model. Journal of neurophysiology, 72(3), 1109–1126.PubMed Golomb, D., Wang, X.J., & Rinzel, J. (1994). Synchronization Properties of Spindle Oscillations in a Thalamic Reticular Nucleus Model. Journal of neurophysiology, 72(3), 1109–1126.PubMed
Zurück zum Zitat Golubitsky, M. (1985). Stewart I Hopf bifurcation in the presence of symmetry Archive for Rational Mechanics and Analysis, (Vol. 87. Golubitsky, M. (1985). Stewart I Hopf bifurcation in the presence of symmetry Archive for Rational Mechanics and Analysis, (Vol. 87.
Zurück zum Zitat Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J.J. (1998). A modular network for legged locomotion Physica D, (Vol. 115. Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J.J. (1998). A modular network for legged locomotion Physica D, (Vol. 115.
Zurück zum Zitat Hebb, D.O. (1949). The organization of behavior. New York: Wiley. Hebb, D.O. (1949). The organization of behavior. New York: Wiley.
Zurück zum Zitat Hosler, J.S., Buxton, K.L., & Smith, B.H. (2000). Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behavioral Neuroscience, 114, 514–525.PubMedCrossRef Hosler, J.S., Buxton, K.L., & Smith, B.H. (2000). Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behavioral Neuroscience, 114, 514–525.PubMedCrossRef
Zurück zum Zitat Ito, I., Bazhenov, M., Ong, R.C.Y., Raman, B., & Stopfer, M. (2009). Frequency Transitions in Odor-Evoked Neural Oscillations. Neuron, 64(5), 692–706.PubMedPubMedCentralCrossRef Ito, I., Bazhenov, M., Ong, R.C.Y., Raman, B., & Stopfer, M. (2009). Frequency Transitions in Odor-Evoked Neural Oscillations. Neuron, 64(5), 692–706.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–355.PubMedCrossRef Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–355.PubMedCrossRef
Zurück zum Zitat Ji, D., & Wilson, M.A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature neuroscience, 10(1), 100–107.PubMedCrossRef Ji, D., & Wilson, M.A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature neuroscience, 10(1), 100–107.PubMedCrossRef
Zurück zum Zitat Jones, L.M., Fontanini, A., Sadacca, B.F., Miller, P., & Katz, D.B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. PNAS, 104(47), 18772–7.PubMedPubMedCentralCrossRef Jones, L.M., Fontanini, A., Sadacca, B.F., Miller, P., & Katz, D.B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. PNAS, 104(47), 18772–7.PubMedPubMedCentralCrossRef
Zurück zum Zitat Joseph, J., Dunn, F.A., & Stopfer, M. (2012). Spontaneous Olfactory Receptor Neuron Activity Determines Cell Response Properties. The Journal of neuroscience, 32(8), 2900–2910.PubMedPubMedCentralCrossRef Joseph, J., Dunn, F.A., & Stopfer, M. (2012). Spontaneous Olfactory Receptor Neuron Activity Determines Cell Response Properties. The Journal of neuroscience, 32(8), 2900–2910.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kawaguchi, Y., & Kubota, Y. (1993). Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of neurophysiology, 70(1), 387–396.PubMed Kawaguchi, Y., & Kubota, Y. (1993). Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of neurophysiology, 70(1), 387–396.PubMed
Zurück zum Zitat Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.PubMedCrossRef Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.PubMedCrossRef
Zurück zum Zitat Kawaguchi, Y., & Kubota, Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience, 85(3), 677–701.PubMedCrossRef Kawaguchi, Y., & Kubota, Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience, 85(3), 677–701.PubMedCrossRef
Zurück zum Zitat Kilpatrick, ZP, & Ermentrout, B (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Computational Biology, 7(11), e1002281.PubMedPubMedCentralCrossRef Kilpatrick, ZP, & Ermentrout, B (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Computational Biology, 7(11), e1002281.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kisvarday, Z.F., Beaulieu, C., & Eysel, U.T. (1993). Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition. Journal of Comparative Neurology, 327, 398–415.PubMedCrossRef Kisvarday, Z.F., Beaulieu, C., & Eysel, U.T. (1993). Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition. Journal of Comparative Neurology, 327, 398–415.PubMedCrossRef
Zurück zum Zitat Komarov, M.A., Osipov, G.V., & Suykens, J.A.K. (2009). Sequentially activated groups in neural networks. EPL (Europhysics Letters), 86(6), 60006.CrossRef Komarov, M.A., Osipov, G.V., & Suykens, J.A.K. (2009). Sequentially activated groups in neural networks. EPL (Europhysics Letters), 86(6), 60006.CrossRef
Zurück zum Zitat Komarov, M.A., Osipov, G.V., Suykens, J.A.K., & Rabinovich, M.I. (2009). Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability. Chaos, 19, 015107.PubMedCrossRef Komarov, M.A., Osipov, G.V., Suykens, J.A.K., & Rabinovich, M.I. (2009). Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability. Chaos, 19, 015107.PubMedCrossRef
Zurück zum Zitat Lam, Y.W., Cohen, L.B., Wachowiak, M., & Zochowski, M.R. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(2), 749–762. Lam, Y.W., Cohen, L.B., Wachowiak, M., & Zochowski, M.R. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(2), 749–762.
Zurück zum Zitat Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature reviews Neuroscience, 3(11), 884–95.PubMedCrossRef Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature reviews Neuroscience, 3(11), 884–95.PubMedCrossRef
Zurück zum Zitat Laurent, G., & Davidowitz, H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science, 265(5180), 1872–5.PubMedCrossRef Laurent, G., & Davidowitz, H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science, 265(5180), 1872–5.PubMedCrossRef
Zurück zum Zitat Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal Representations of Odors in an Olfactory. The Journal of Neuroscuence, 16(12), 3837–3847. Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal Representations of Odors in an Olfactory. The Journal of Neuroscuence, 16(12), 3837–3847.
Zurück zum Zitat Lee, A.K., & Wilson, M.A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRef Lee, A.K., & Wilson, M.A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRef
Zurück zum Zitat Leitch, B., & Laurent, G. (1993). Distribution of GABAergic synaptic terminals on the dendrites of locust spiking local interneurones. J Comp Neurol, 337(3), 461–470.PubMedCrossRef Leitch, B., & Laurent, G. (1993). Distribution of GABAergic synaptic terminals on the dendrites of locust spiking local interneurones. J Comp Neurol, 337(3), 461–470.PubMedCrossRef
Zurück zum Zitat Leitch, B., & Laurent, G. (1996). GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. Journal of Comparative Neurology, 372(4), 487–514.PubMedCrossRef Leitch, B., & Laurent, G. (1996). GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. Journal of Comparative Neurology, 372(4), 487–514.PubMedCrossRef
Zurück zum Zitat Lewis, T.J., & Rinzel, J. (2003). Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef Lewis, T.J., & Rinzel, J. (2003). Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRef
Zurück zum Zitat Louie, K., & Wilson, M.A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRef Louie, K., & Wilson, M.A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRef
Zurück zum Zitat MacLeod, K., Bäcker, A, & Laurent, G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains Nature, 395(6703), 693–698.PubMedCrossRef MacLeod, K., Bäcker, A, & Laurent, G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains Nature, 395(6703), 693–698.PubMedCrossRef
Zurück zum Zitat Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.PubMed Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.PubMed
Zurück zum Zitat Matveev, V., Bose, A., & Nadim, F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of Computational Neuroscience, 23, 169–187.PubMedPubMedCentralCrossRef Matveev, V., Bose, A., & Nadim, F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of Computational Neuroscience, 23, 169–187.PubMedPubMedCentralCrossRef
Zurück zum Zitat Nowotny, T., & Rabinovich, M.I. (2007). Dynamical origin of independent spiking and bursting activity in neural microcircuits. Physical Review Letters, 98(March), 1–4. Nowotny, T., & Rabinovich, M.I. (2007). Dynamical origin of independent spiking and bursting activity in neural microcircuits. Physical Review Letters, 98(March), 1–4.
Zurück zum Zitat O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171–175.PubMedCrossRef O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171–175.PubMedCrossRef
Zurück zum Zitat Pinto, D.J., & Ermentrout, G.B. (2001). Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef Pinto, D.J., & Ermentrout, G.B. (2001). Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRef
Zurück zum Zitat Rabinovich, M.I., Huerta, R., Varona, P., & Afraimovich, V.S. (2006). Generation and reshaping of sequences in neural systems. Biological Cybernetics, 95, 519–536.PubMedCrossRef Rabinovich, M.I., Huerta, R., Varona, P., & Afraimovich, V.S. (2006). Generation and reshaping of sequences in neural systems. Biological Cybernetics, 95, 519–536.PubMedCrossRef
Zurück zum Zitat Rinzel, J., Terman, D., Wang, X., & Ermentrout, B. (1998). Propagating activity patterns in large-scale inhibitory neuronal networks. Science (New York, NY), (Vol. 279. Rinzel, J., Terman, D., Wang, X., & Ermentrout, B. (1998). Propagating activity patterns in large-scale inhibitory neuronal networks. Science (New York, NY), (Vol. 279.
Zurück zum Zitat Schoppa, N.E. (2006). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron, 49, 271–283.PubMedCrossRef Schoppa, N.E. (2006). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron, 49, 271–283.PubMedCrossRef
Zurück zum Zitat Schwabedal, J.T.C., Neiman, A.B., & Shilnikov, A.L. (2014). Robust design of polyrhythmic neural circuits. Physical Review E, 90(2), 022715.CrossRef Schwabedal, J.T.C., Neiman, A.B., & Shilnikov, A.L. (2014). Robust design of polyrhythmic neural circuits. Physical Review E, 90(2), 022715.CrossRef
Zurück zum Zitat Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8, 1–63.CrossRef Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8, 1–63.CrossRef
Zurück zum Zitat Steriade, M., Jones, E., & McCormick, D. (1997). Thalamus: organization and function. Oxford: Elsevier Science Ltd. Steriade, M., Jones, E., & McCormick, D. (1997). Thalamus: organization and function. Oxford: Elsevier Science Ltd.
Zurück zum Zitat Stopfer, M., Bhagavan, S., Smith, B.H., & Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390(6655), 70–74.PubMedCrossRef Stopfer, M., Bhagavan, S., Smith, B.H., & Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390(6655), 70–74.PubMedCrossRef
Zurück zum Zitat Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D: Nonlinear Phenomena, 117, 241–275.CrossRef Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D: Nonlinear Phenomena, 117, 241–275.CrossRef
Zurück zum Zitat Traub, R.D. (1982). Simulation of intrinsic bursting in CA3. The Journal of Neuroscuence, 7(5), 1233–1242.CrossRef Traub, R.D. (1982). Simulation of intrinsic bursting in CA3. The Journal of Neuroscuence, 7(5), 1233–1242.CrossRef
Zurück zum Zitat Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259–284.CrossRef Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259–284.CrossRef
Zurück zum Zitat Ulrich, D., & Huguenard, J.R. (1997). GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. Journal of neurophysiology, 78(3), 1748–1751.PubMed Ulrich, D., & Huguenard, J.R. (1997). GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. Journal of neurophysiology, 78(3), 1748–1751.PubMed
Zurück zum Zitat Van Vreeswijk, C., Abott, L.F., & Ermentrout, G.B. (1994). When Inhibition not Excitation Synchronizes Neural Firing. Journal of Computational Neuroscience, 1, 313.PubMedCrossRef Van Vreeswijk, C., Abott, L.F., & Ermentrout, G.B. (1994). When Inhibition not Excitation Synchronizes Neural Firing. Journal of Computational Neuroscience, 1, 313.PubMedCrossRef
Zurück zum Zitat Von Krosigk, M., Bal, T., & McCormick, D.A. (1993). Cellular mechanisms of a synchronized oscillations in the thalamus. Science, 261, 361.PubMedCrossRef Von Krosigk, M., Bal, T., & McCormick, D.A. (1993). Cellular mechanisms of a synchronized oscillations in the thalamus. Science, 261, 361.PubMedCrossRef
Zurück zum Zitat Wang, X.J., & Rinzel, J. (1992). Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons. Wang, X.J., & Rinzel, J. (1992). Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons.
Zurück zum Zitat Wang, X.J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience, 53(4), 899–904.PubMedCrossRef Wang, X.J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience, 53(4), 899–904.PubMedCrossRef
Zurück zum Zitat Wang, X.J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(20), 6402–6413. Wang, X.J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(20), 6402–6413.
Zurück zum Zitat Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silderberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 561(1), 65–90.PubMedPubMedCentralCrossRef Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silderberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 561(1), 65–90.PubMedPubMedCentralCrossRef
Zurück zum Zitat Warren, B., & Kloppenburg, P. (2014). Rapid and Slow Chemical Synaptic Interactions of Cholinergic Projection Neurons and GABAergic Local Interneurons in the Insect Antennal Lobe. Journal of Neuroscience, 34 (39), 13039–13046.PubMedCrossRef Warren, B., & Kloppenburg, P. (2014). Rapid and Slow Chemical Synaptic Interactions of Cholinergic Projection Neurons and GABAergic Local Interneurons in the Insect Antennal Lobe. Journal of Neuroscience, 34 (39), 13039–13046.PubMedCrossRef
Zurück zum Zitat Wehr, M., & Laurent, G. (1996). Odors encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166.PubMedCrossRef Wehr, M., & Laurent, G. (1996). Odors encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166.PubMedCrossRef
Zurück zum Zitat Wojcik, J., Schwabedal, J., Clewley, R., & Shilnikov, A.L. (2014). Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PloS one, 9(4), e92918.PubMedPubMedCentralCrossRef Wojcik, J., Schwabedal, J., Clewley, R., & Shilnikov, A.L. (2014). Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PloS one, 9(4), e92918.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature neuroscience, 8(11), 1552–1559.PubMedCrossRef Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature neuroscience, 8(11), 1552–1559.PubMedCrossRef
Metadaten
Titel
Linking dynamics of the inhibitory network to the input structure
verfasst von
Maxim Komarov
Maxim Bazhenov
Publikationsdatum
01.12.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0622-8

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Neuroscience 3/2016 Zur Ausgabe

Premium Partner