Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2016

01.12.2016

Neural assemblies revealed by inferred connectivity-based models of prefrontal cortex recordings

verfasst von: G. Tavoni, S. Cocco, R. Monasson

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present two graphical model-based approaches to analyse the distribution of neural activities in the prefrontal cortex of behaving rats. The first method aims at identifying cell assemblies, groups of synchronously activating neurons possibly representing the units of neural coding and memory. A graphical (Ising) model distribution of snapshots of the neural activities, with an effective connectivity matrix reproducing the correlation statistics, is inferred from multi-electrode recordings, and then simulated in the presence of a virtual external drive, favoring high activity (multi-neuron) configurations. As the drive increases groups of neurons may activate together, and reveal the existence of cell assemblies. The identified groups are then showed to strongly coactivate in the neural spiking data and to be highly specific of the inferred connectivity network, which offers a sparse representation of the correlation pattern across neural cells. The second method relies on the inference of a Generalized Linear Model, in which spiking events are integrated over time by neurons through an effective connectivity matrix. The functional connectivity matrices inferred with the two approaches are compared. Sampling of the inferred GLM distribution allows us to study the spatio-temporal patterns of activation of neurons within the identified cell assemblies, particularly their activation order: the prevalence of one order with respect to the others is weak and reflects the neuron average firing rates and the strength of the largest effective connections. Other properties of the identified cell assemblies (spatial distribution of coactivation events and firing rates of coactivating neurons) are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbeel, P., Koller D., Ng A.Y. (2006) Learning factor graphs in polynomial time and sample complexity. The Journal of Machine Learning Research 7: 1743–1788. Abbeel, P., Koller D., Ng A.Y. (2006) Learning factor graphs in polynomial time and sample complexity. The Journal of Machine Learning Research 7: 1743–1788.
Zurück zum Zitat Barton, J., Cocco S. (2013) Ising models for neural activity inferred via selective cluster expansion: structural and coding properties. Journal of Statistical Mechanics: Theory and Experiment 2013 (03): P03002.CrossRef Barton, J., Cocco S. (2013) Ising models for neural activity inferred via selective cluster expansion: structural and coding properties. Journal of Statistical Mechanics: Theory and Experiment 2013 (03): P03002.CrossRef
Zurück zum Zitat Battaglia, F.P., Benchenane K., Sirota A., Pennartz C.M.A., Wiener S.I. (2011) The hippocampus: hub of brain network communication for memory. Trends in Cognitive Sciences 15 (7): 310–318.PubMed Battaglia, F.P., Benchenane K., Sirota A., Pennartz C.M.A., Wiener S.I. (2011) The hippocampus: hub of brain network communication for memory. Trends in Cognitive Sciences 15 (7): 310–318.PubMed
Zurück zum Zitat Benchenane, K., Peyrache A., Khamassi M., Tierney P.L., Gioanni Y., Battaglia F.P., Wiener S. I. (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66 (6): 921–936.CrossRefPubMed Benchenane, K., Peyrache A., Khamassi M., Tierney P.L., Gioanni Y., Battaglia F.P., Wiener S. I. (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66 (6): 921–936.CrossRefPubMed
Zurück zum Zitat Billeh, Y.N., Schaub M.T., Anastassiou C.A., Barahona M., Koch C. (2014) Revealing cell assemblies at multiple levels of granularity. Journal of Neuroscience Methods 236: 92– 106.CrossRefPubMed Billeh, Y.N., Schaub M.T., Anastassiou C.A., Barahona M., Koch C. (2014) Revealing cell assemblies at multiple levels of granularity. Journal of Neuroscience Methods 236: 92– 106.CrossRefPubMed
Zurück zum Zitat Brown, E.N., Frank L.M., Tang D., Quirk M.C., Wilson M.A. (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of Neuroscience 18 (18): 7411–7425.PubMed Brown, E.N., Frank L.M., Tang D., Quirk M.C., Wilson M.A. (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of Neuroscience 18 (18): 7411–7425.PubMed
Zurück zum Zitat Cardin, J.A., Carlén M., Meletis K., Knoblich U., Zhang F., Deisseroth K., Tsai L.H., Moore C.I. (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459 (7247): 663–667.CrossRefPubMedPubMedCentral Cardin, J.A., Carlén M., Meletis K., Knoblich U., Zhang F., Deisseroth K., Tsai L.H., Moore C.I. (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459 (7247): 663–667.CrossRefPubMedPubMedCentral
Zurück zum Zitat Carr, M.F., Jadhav S.P., Frank L.M. (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nature Neuroscience 14 (2): 147–153.CrossRefPubMedPubMedCentral Carr, M.F., Jadhav S.P., Frank L.M. (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nature Neuroscience 14 (2): 147–153.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press. Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press.
Zurück zum Zitat Chang, S.W.C., Gariépy J., Platt M.L. (2013) Neuronal reference frames for social decisions in primate frontal cortex. Nature Neuroscience 16 (2): 243–250.CrossRefPubMed Chang, S.W.C., Gariépy J., Platt M.L. (2013) Neuronal reference frames for social decisions in primate frontal cortex. Nature Neuroscience 16 (2): 243–250.CrossRefPubMed
Zurück zum Zitat Chapin, J.K., Nicolelis M.A.L. (1999) Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. Journal of Neuroscience Methods 94 (1): 121–140.CrossRefPubMed Chapin, J.K., Nicolelis M.A.L. (1999) Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. Journal of Neuroscience Methods 94 (1): 121–140.CrossRefPubMed
Zurück zum Zitat Cocco, S., Monasson R. (2011) Adaptive cluster expansion for inferring boltzmann machines with noisy data. Physical Review Letters 106 (9): 090601.CrossRefPubMed Cocco, S., Monasson R. (2011) Adaptive cluster expansion for inferring boltzmann machines with noisy data. Physical Review Letters 106 (9): 090601.CrossRefPubMed
Zurück zum Zitat Cocco, S., Monasson R. (2012) Adaptive cluster expansion for the inverse ising problem: convergence, algorithm and tests. Journal of Statistical Physics 147 (2): 252–314.CrossRef Cocco, S., Monasson R. (2012) Adaptive cluster expansion for the inverse ising problem: convergence, algorithm and tests. Journal of Statistical Physics 147 (2): 252–314.CrossRef
Zurück zum Zitat Euston, D.R., Tatsuno M., McNaughton B.L. (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318 (5853): 1147–1150.CrossRefPubMed Euston, D.R., Tatsuno M., McNaughton B.L. (2007) Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318 (5853): 1147–1150.CrossRefPubMed
Zurück zum Zitat Foster, D.J., Wilson M.A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440 (7084): 680–683.CrossRefPubMed Foster, D.J., Wilson M.A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440 (7084): 680–683.CrossRefPubMed
Zurück zum Zitat Ganguli, S., Sompolinsky H. (2012) Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience 35: 485–508.CrossRefPubMed Ganguli, S., Sompolinsky H. (2012) Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annual Review of Neuroscience 35: 485–508.CrossRefPubMed
Zurück zum Zitat Ganmor, E., Segev R., Schneidman E. (2009) How fast can we learn maximum entropy models of neural populations In Journal of Physics: Conference Series, volume 197, page 012020. Ganmor, E., Segev R., Schneidman E. (2009) How fast can we learn maximum entropy models of neural populations In Journal of Physics: Conference Series, volume 197, page 012020.
Zurück zum Zitat Ganmor, E., Segev R., Schneidman E. (2011a) The architecture of functional interaction networks in the retina. The Journal of Neuroscience 31 (8): 3044–3054. Ganmor, E., Segev R., Schneidman E. (2011a) The architecture of functional interaction networks in the retina. The Journal of Neuroscience 31 (8): 3044–3054.
Zurück zum Zitat Ganmor, E., Segev R., Schneidman E. (2011b) Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proceedings of the National Academy of Sciences 108 (23): 9679–9684. Ganmor, E., Segev R., Schneidman E. (2011b) Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proceedings of the National Academy of Sciences 108 (23): 9679–9684.
Zurück zum Zitat Gerwinn, S., Macke J., Bethge M. (2010) Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience: 4:12:1–17. Gerwinn, S., Macke J., Bethge M. (2010) Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience: 4:12:1–17.
Zurück zum Zitat Harris, K.D., Csicsvari J., Hirase H., Dragoi G., Buzsáki G. (2003) Organization of cell assemblies in the hippocampus. Nature 424 (6948): 552–556.CrossRefPubMed Harris, K.D., Csicsvari J., Hirase H., Dragoi G., Buzsáki G. (2003) Organization of cell assemblies in the hippocampus. Nature 424 (6948): 552–556.CrossRefPubMed
Zurück zum Zitat Hebb, D.O. (1949) The organization of behavior: A neurophysiological theory. Wiley. Hebb, D.O. (1949) The organization of behavior: A neurophysiological theory. Wiley.
Zurück zum Zitat Hoffman, K.L., McNaughton B.L. (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297 (5589): 2070–2073. Hoffman, K.L., McNaughton B.L. (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297 (5589): 2070–2073.
Zurück zum Zitat Ikegaya, Y., Aaron G., Cossart R., Aronov D., Lampl I., Ferster D., Yuste R. (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304 (5670): 559–564.CrossRefPubMed Ikegaya, Y., Aaron G., Cossart R., Aronov D., Lampl I., Ferster D., Yuste R. (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304 (5670): 559–564.CrossRefPubMed
Zurück zum Zitat Ji, D., Wilson M.A. (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience 10 (1): 100–107.CrossRefPubMed Ji, D., Wilson M.A. (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience 10 (1): 100–107.CrossRefPubMed
Zurück zum Zitat Johnson, A., Redish A.D. (2007) Neural ensembles in ca3 transiently encode paths forward of the animal at a decision point. The Journal of Neuroscience 27 (45): 12176–12189.CrossRefPubMed Johnson, A., Redish A.D. (2007) Neural ensembles in ca3 transiently encode paths forward of the animal at a decision point. The Journal of Neuroscience 27 (45): 12176–12189.CrossRefPubMed
Zurück zum Zitat Lee, A.K., Wilson M.A. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36 (6): 1183–1194.CrossRefPubMed Lee, A.K., Wilson M.A. (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36 (6): 1183–1194.CrossRefPubMed
Zurück zum Zitat Litwin-Kumar, A., Doiron B. (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience 15 (11): 1498–1505.CrossRefPubMedPubMedCentral Litwin-Kumar, A., Doiron B. (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience 15 (11): 1498–1505.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lopes-dos Santos, V., Conde-Ocazionez S., Nicolelis M.A.L., Ribeiro S.T., Tort A.B.L. (2011) Neuronal assembly detection and cell membership specification by principal component analysis. Plos One 6 (6): e20996.CrossRefPubMedPubMedCentral Lopes-dos Santos, V., Conde-Ocazionez S., Nicolelis M.A.L., Ribeiro S.T., Tort A.B.L. (2011) Neuronal assembly detection and cell membership specification by principal component analysis. Plos One 6 (6): e20996.CrossRefPubMedPubMedCentral
Zurück zum Zitat Lopes-dos Santos, V., Ribeiro S., Tort A.B.L. (2013) Detecting cell assemblies in large neuronal populations. Journal of Neuroscience Methods 220 (2): 149–166.CrossRefPubMed Lopes-dos Santos, V., Ribeiro S., Tort A.B.L. (2013) Detecting cell assemblies in large neuronal populations. Journal of Neuroscience Methods 220 (2): 149–166.CrossRefPubMed
Zurück zum Zitat Luczak, A., Barthó P., Marguet S.L., Buzsáki G., Harris K.D. (2007) Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences 104 (1): 347–352.CrossRef Luczak, A., Barthó P., Marguet S.L., Buzsáki G., Harris K.D. (2007) Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences 104 (1): 347–352.CrossRef
Zurück zum Zitat McCormick, D.A., Connors B.W., Lighthall J.W., Prince D.A. (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54 (4): 782–806.PubMed McCormick, D.A., Connors B.W., Lighthall J.W., Prince D.A. (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54 (4): 782–806.PubMed
Zurück zum Zitat Peyrache, A., Benchenane K., Khamassi M., Wiener S., Battaglia F. (2010a) Sequential reinstatement of neocortical activity during slow oscillations depends on cells’ global activity. Frontiers in Systems Neuroscience 3: 18. Peyrache, A., Benchenane K., Khamassi M., Wiener S., Battaglia F. (2010a) Sequential reinstatement of neocortical activity during slow oscillations depends on cells’ global activity. Frontiers in Systems Neuroscience 3: 18.
Zurück zum Zitat Peyrache, A., Benchenane K., Khamassi M., Wiener S.I., Battaglia F.P. (2010b) Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of Computational Neuroscience 29 (1-2): 309–325. Peyrache, A., Benchenane K., Khamassi M., Wiener S.I., Battaglia F.P. (2010b) Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution. Journal of Computational Neuroscience 29 (1-2): 309–325.
Zurück zum Zitat Peyrache, A., Khamassi M., Benchenane K., Wiener S. I., Battaglia F.P. (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience 12 (7): 919–926.CrossRefPubMed Peyrache, A., Khamassi M., Benchenane K., Wiener S. I., Battaglia F.P. (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience 12 (7): 919–926.CrossRefPubMed
Zurück zum Zitat Pfeiffer, B.E., Foster D.J. (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497 (7447): 74–79. Pfeiffer, B.E., Foster D.J. (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497 (7447): 74–79.
Zurück zum Zitat Qin, Y.L., Mcnaughton B.L., Skaggs W.E., Barnes C.A. (1997) Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philosophical Transactions of the Royal Society B: Biological Sciences 352 (1360): 1525–1533.CrossRef Qin, Y.L., Mcnaughton B.L., Skaggs W.E., Barnes C.A. (1997) Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philosophical Transactions of the Royal Society B: Biological Sciences 352 (1360): 1525–1533.CrossRef
Zurück zum Zitat Roumis, D., Franck L. (2015) Hippocampal sahrp-waves ripples in waking and sleeping states. Current Opinion in Neurobiology 35: 6–12.CrossRefPubMed Roumis, D., Franck L. (2015) Hippocampal sahrp-waves ripples in waking and sleeping states. Current Opinion in Neurobiology 35: 6–12.CrossRefPubMed
Zurück zum Zitat Schneidman, E., Berry M.J., Segev R., Bialek W. (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440 (7087): 1007–1012.CrossRefPubMedPubMedCentral Schneidman, E., Berry M.J., Segev R., Bialek W. (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440 (7087): 1007–1012.CrossRefPubMedPubMedCentral
Zurück zum Zitat Singer, A.C., Carr M.F., Karlsson M.P., Frank L.M. (2013) Hippocampal swr activity predicts correct decisions during the initial learning of an alternation task. Neuron 77 (6): 1163–1173.CrossRefPubMedPubMedCentral Singer, A.C., Carr M.F., Karlsson M.P., Frank L.M. (2013) Hippocampal swr activity predicts correct decisions during the initial learning of an alternation task. Neuron 77 (6): 1163–1173.CrossRefPubMedPubMedCentral
Zurück zum Zitat Singh, A., Peyrache A., Humphries M. (2015) Task learning reveals signatures of sample-based internal models in rodent prefrontal cortex. bioRxiv. doi:10.1101/027102. Singh, A., Peyrache A., Humphries M. (2015) Task learning reveals signatures of sample-based internal models in rodent prefrontal cortex. bioRxiv. doi:10.​1101/​027102.
Zurück zum Zitat Tavoni, G., Ferrari U., Battaglia F.P., Cocco S., Monasson R. (2015) Functional coupling networks inferred from prefrontal cortex activity show learning-related effective plasticity. bioRxiv. doi:10.1101/028316. Tavoni, G., Ferrari U., Battaglia F.P., Cocco S., Monasson R. (2015) Functional coupling networks inferred from prefrontal cortex activity show learning-related effective plasticity. bioRxiv. doi:10.​1101/​028316.
Zurück zum Zitat Tkaċik, G., Marre O., Amodei D., Schneidman E., Bialek W., Berry II M.J. (2014) Searching for collective behavior in a large network of sensory neurons. Plos Computational Biology. Tkaċik, G., Marre O., Amodei D., Schneidman E., Bialek W., Berry II M.J. (2014) Searching for collective behavior in a large network of sensory neurons. Plos Computational Biology.
Zurück zum Zitat Truccolo, W., Eden U.T., Fellows M.R., Donoghue J.P., Brown E.N. (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology 93 (2): 1074–1089.CrossRefPubMed Truccolo, W., Eden U.T., Fellows M.R., Donoghue J.P., Brown E.N. (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology 93 (2): 1074–1089.CrossRefPubMed
Zurück zum Zitat Wilson, M.A., McNaughton B.L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265 (5172): 676–679.CrossRefPubMed Wilson, M.A., McNaughton B.L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265 (5172): 676–679.CrossRefPubMed
Metadaten
Titel
Neural assemblies revealed by inferred connectivity-based models of prefrontal cortex recordings
verfasst von
G. Tavoni
S. Cocco
R. Monasson
Publikationsdatum
01.12.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0617-5

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Neuroscience 3/2016 Zur Ausgabe

Premium Partner