Skip to main content
Erschienen in: Innovative Infrastructure Solutions 11/2023

01.11.2023 | Technical Paper

Liquefaction analysis of sand-tire mixture with a critical state two-surface plasticity model

verfasst von: Masoud Raveshi, Reza Noorzad

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, sand reinforced with tire crumbs can be used in many geotechnical applications such as lightweight materials and backfill, vibration isolations, slope stabilizations, thermal insulations, and liquefaction preventing materials. To evaluate the liquefaction potential of sand-tire mixture numerically, it is essential to use a proper constitutive model for the prediction of liquefaction under dynamic loading. In this research, Dafalias and Manzari’s model is used to predict the behavior of the sand-tire mixture, in which unique parameters are applied for different ranges of void ratio and initial stress. Monotonic and cyclic triaxial tests are conducted on the sand-tire mixture at various tire contents to calibrate constitutive model parameters. After the calibration model parameters of the sand-tire mixture, the analysis of liquefaction was carried out. The effects of several parameters including different amounts of tire crumb, the percentage of soil relative density, and different earthquake time histories are also studied. To confirm the model efficiency of this paper, a simulation of the VELACS centrifuge tests of Model No 1 is conducted for liquefaction analysis. The results show that Dafalias and Manzari’s model can be used to predict excess pore water pressure generation. Moreover, the use of tire particles in the sand can improve the liquefaction resistance of the sand.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM D (2004) 6270 Standard practice for use of scrap tires in civil engineering applications. ASTM International, West Conshohocken ASTM D (2004) 6270 Standard practice for use of scrap tires in civil engineering applications. ASTM International, West Conshohocken
2.
Zurück zum Zitat Bosscher PJ, Edil TB, Eldin N (1993) Construction and performance of shredded waste tire test embankment. Transp Res Rec 1345:44–52 Bosscher PJ, Edil TB, Eldin N (1993) Construction and performance of shredded waste tire test embankment. Transp Res Rec 1345:44–52
3.
Zurück zum Zitat Masad EM, Taha RHOC, Papagiannakis T (1996) Engineering properties of tire/soil mixtures as a lightweight fill material. Geotech Test J 19(3):297–304CrossRef Masad EM, Taha RHOC, Papagiannakis T (1996) Engineering properties of tire/soil mixtures as a lightweight fill material. Geotech Test J 19(3):297–304CrossRef
4.
Zurück zum Zitat Lee JH, Sagado R, Bernal A, Lovell CW (1999) Sheredded tires and rubber-sand as lightweight backfill. J Geotech Geoenvironmental Eng 125(2):132–141CrossRef Lee JH, Sagado R, Bernal A, Lovell CW (1999) Sheredded tires and rubber-sand as lightweight backfill. J Geotech Geoenvironmental Eng 125(2):132–141CrossRef
5.
Zurück zum Zitat Dickson TH, Dwyer DF, Humphrey DN (2001) Prototype tireshred embankment construction. Transp Res Rec 1755(1):160–167CrossRef Dickson TH, Dwyer DF, Humphrey DN (2001) Prototype tireshred embankment construction. Transp Res Rec 1755(1):160–167CrossRef
6.
Zurück zum Zitat Meles D, Bayat A, Shafiee MH, Nassiri S, Gul M (2013) Field study on construction of highway embankment made from two tire derived aggregate types and tire-derived aggregate mixed with soil as fill materials. In: Proc., 92 Annual Meeting on Transportation Research Board. Washington, DC, Session 622 Meles D, Bayat A, Shafiee MH, Nassiri S, Gul M (2013) Field study on construction of highway embankment made from two tire derived aggregate types and tire-derived aggregate mixed with soil as fill materials. In: Proc., 92 Annual Meeting on Transportation Research Board. Washington, DC, Session 622
7.
Zurück zum Zitat Hataf N, Rahimi MM (2005) Experimental investigation on bearing capacity of sand reinforced with randomly distributed tire shreds. Constr Build Mater 20(10):910–916CrossRef Hataf N, Rahimi MM (2005) Experimental investigation on bearing capacity of sand reinforced with randomly distributed tire shreds. Constr Build Mater 20(10):910–916CrossRef
9.
Zurück zum Zitat Tsang HH (2008) Seismic isolation by rubber-soil mixture for developing countries. Earthq Eng Struct Dyn 37(2):283–303CrossRef Tsang HH (2008) Seismic isolation by rubber-soil mixture for developing countries. Earthq Eng Struct Dyn 37(2):283–303CrossRef
10.
Zurück zum Zitat Tsang HH, Lo SH, Xu X, Sheikh MN (2012) Seismic isolation for low-to-medium rise buildings using granulated rubber soil mixtures: numerical study. Earthq Eng Struct Dyn 41(14):2009–2024CrossRef Tsang HH, Lo SH, Xu X, Sheikh MN (2012) Seismic isolation for low-to-medium rise buildings using granulated rubber soil mixtures: numerical study. Earthq Eng Struct Dyn 41(14):2009–2024CrossRef
11.
Zurück zum Zitat Kaneko T, Orense RP, Hyodo M, Yoshimoto N (2013) Seismic response characteristics of saturated sand deposits mixed with tire chips. J Geotech Geoenvironmental Eng 139:633–643CrossRef Kaneko T, Orense RP, Hyodo M, Yoshimoto N (2013) Seismic response characteristics of saturated sand deposits mixed with tire chips. J Geotech Geoenvironmental Eng 139:633–643CrossRef
12.
Zurück zum Zitat Brunet S, Carlos de la Llera J, Kausel E (2016) Non-linear modeling of seismic isolation systems made of recycled tire-rubber. Soil Dyn Earthq Eng 85:134–145CrossRef Brunet S, Carlos de la Llera J, Kausel E (2016) Non-linear modeling of seismic isolation systems made of recycled tire-rubber. Soil Dyn Earthq Eng 85:134–145CrossRef
13.
Zurück zum Zitat Chew JH, Leong EC (2019) Field and numerical modeling of sand-rubber mixtures vibration barrier. Soil Dyn Earthq Eng 125:105740CrossRef Chew JH, Leong EC (2019) Field and numerical modeling of sand-rubber mixtures vibration barrier. Soil Dyn Earthq Eng 125:105740CrossRef
14.
Zurück zum Zitat Humphrey DN, Sandford TC, Cribbs MM, Gharegrat H, Manion WP, (1992) Tire chips as lightweight backfill for retaining walls: Phase I. No. NETCR-8. Boston, New England Consortium. Humphrey DN, Sandford TC, Cribbs MM, Gharegrat H, Manion WP, (1992) Tire chips as lightweight backfill for retaining walls: Phase I. No. NETCR-8. Boston, New England Consortium.
15.
Zurück zum Zitat Hazarika H, Kohama E, Sugano T (2008) Underwater shake table tests on waterfront structures protected with tire chips cushion. J Geotech Geoenvironmental Eng 134(12):1706–1719CrossRef Hazarika H, Kohama E, Sugano T (2008) Underwater shake table tests on waterfront structures protected with tire chips cushion. J Geotech Geoenvironmental Eng 134(12):1706–1719CrossRef
16.
Zurück zum Zitat Xiao M, Bowen J, Graham M, Larralde J (2012) Comparison of seismic responses of geosynthetically-reinforced walls with tire-derived aggregates and granular backfills. J Mater Civ Eng 24(11):1368–1377CrossRef Xiao M, Bowen J, Graham M, Larralde J (2012) Comparison of seismic responses of geosynthetically-reinforced walls with tire-derived aggregates and granular backfills. J Mater Civ Eng 24(11):1368–1377CrossRef
17.
Zurück zum Zitat Mittal RK, Gill G (2016) Recent developments in utilizing waste tires to reduce seismic earth pressures and liquefaction potential. J Adv Struct Geotech Eng 5(3):107–114 Mittal RK, Gill G (2016) Recent developments in utilizing waste tires to reduce seismic earth pressures and liquefaction potential. J Adv Struct Geotech Eng 5(3):107–114
18.
Zurück zum Zitat Tafreshi S, Mehrjardi G, Dawson, (2012) A Buried pipe in rubber-soil backfilled trenches under cyclic loading. J Geotech Geoenvironmental Eng 138(11):1346–1356CrossRef Tafreshi S, Mehrjardi G, Dawson, (2012) A Buried pipe in rubber-soil backfilled trenches under cyclic loading. J Geotech Geoenvironmental Eng 138(11):1346–1356CrossRef
19.
Zurück zum Zitat Sim WW, Towhata I, Yamada S, Moinet GJ-M (2012) Shaking table tests modelling small diameter pipes crossing a vertical fault. Soil Dyn Earthq Eng 35:59–71CrossRef Sim WW, Towhata I, Yamada S, Moinet GJ-M (2012) Shaking table tests modelling small diameter pipes crossing a vertical fault. Soil Dyn Earthq Eng 35:59–71CrossRef
20.
Zurück zum Zitat Otsubo M, Towhata I, Hayashida T, Liu B, Goto S (2016) Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials. Soils Found 56(3):365–378CrossRef Otsubo M, Towhata I, Hayashida T, Liu B, Goto S (2016) Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials. Soils Found 56(3):365–378CrossRef
21.
Zurück zum Zitat Ni P, Qin X, Yi Y (2018) Use of tire-derived aggregate for seismic mitigation of buried pipelines under strike-slip faults. Soil Dyn Earthq Eng 115:495–506CrossRef Ni P, Qin X, Yi Y (2018) Use of tire-derived aggregate for seismic mitigation of buried pipelines under strike-slip faults. Soil Dyn Earthq Eng 115:495–506CrossRef
22.
Zurück zum Zitat Foose GJ, Benson CH, Bosscher PJ (1996) Sand reinforced with shredded waste tires. J Geotech Eng 122(9):760–767CrossRef Foose GJ, Benson CH, Bosscher PJ (1996) Sand reinforced with shredded waste tires. J Geotech Eng 122(9):760–767CrossRef
23.
Zurück zum Zitat Yang S, Lohnes RA, Kjartanson BH (2002) Mechanical properties of shredded tires. J Geotech Test 25(1):44–52CrossRef Yang S, Lohnes RA, Kjartanson BH (2002) Mechanical properties of shredded tires. J Geotech Test 25(1):44–52CrossRef
24.
Zurück zum Zitat Zornberg JG, Viratjandr C, Cabral AR (2004) Behaviour of tire shred-sand mixtures. Can Geotech J 41(2):227–241CrossRef Zornberg JG, Viratjandr C, Cabral AR (2004) Behaviour of tire shred-sand mixtures. Can Geotech J 41(2):227–241CrossRef
25.
Zurück zum Zitat Ghazavi M, Sakhi MA (2005) Influence of optimized tire shreds on shear strength parameters of sand. Int J Geomech 5(1):58–65CrossRef Ghazavi M, Sakhi MA (2005) Influence of optimized tire shreds on shear strength parameters of sand. Int J Geomech 5(1):58–65CrossRef
26.
Zurück zum Zitat Rao GV, Dutta RK (2006) Compressibility and strength behaviour of sand–tyre chip mixtures. Geotech Geol Eng 24(3):711–724CrossRef Rao GV, Dutta RK (2006) Compressibility and strength behaviour of sand–tyre chip mixtures. Geotech Geol Eng 24(3):711–724CrossRef
27.
Zurück zum Zitat Noorzad R, Raveshi M (2017) Mechanical behavior of waste tire crumbs–sand mixtures determined by triaxial tests. Geotech Geol Eng 35:1793–1802CrossRef Noorzad R, Raveshi M (2017) Mechanical behavior of waste tire crumbs–sand mixtures determined by triaxial tests. Geotech Geol Eng 35:1793–1802CrossRef
28.
Zurück zum Zitat Gotteland P, Lambber S, Balachowski L (2005) Strength characteristics of tire chipssand mixtures. Stud Geotech Mech XXVII 27(1–2):55–66 Gotteland P, Lambber S, Balachowski L (2005) Strength characteristics of tire chipssand mixtures. Stud Geotech Mech XXVII 27(1–2):55–66
29.
Zurück zum Zitat Özkul ZH, Baykal G (2007) Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. J Geotech Geoenviron Eng 133(7):767–781CrossRef Özkul ZH, Baykal G (2007) Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. J Geotech Geoenviron Eng 133(7):767–781CrossRef
30.
Zurück zum Zitat Feng Z-Y, Sutter K (2000) Dynamic properties of granulated rubber/sand mixtures. J Geotech Test 23(3):338–344CrossRef Feng Z-Y, Sutter K (2000) Dynamic properties of granulated rubber/sand mixtures. J Geotech Test 23(3):338–344CrossRef
31.
Zurück zum Zitat Senetakis K, Anastasiadis A, Pitilakis K (2012) Souli A Dynamic behavior of sand/rubber mixtures. Part II: effect of rubber content on G=G0-γ DT curves and volumetric threshold strain. J ASTM Int 9(2):1–12CrossRef Senetakis K, Anastasiadis A, Pitilakis K (2012) Souli A Dynamic behavior of sand/rubber mixtures. Part II: effect of rubber content on G=G0-γ DT curves and volumetric threshold strain. J ASTM Int 9(2):1–12CrossRef
32.
Zurück zum Zitat Dutta S, Nanda RP (2021) Finite element analysis of rubber–soil mixture (RSM) for the pile response reduction under liquefaction. Arab J Geosci 14:1729CrossRef Dutta S, Nanda RP (2021) Finite element analysis of rubbersoil mixture (RSM) for the pile response reduction under liquefaction. Arab J Geosci 14:1729CrossRef
33.
Zurück zum Zitat Nanda RP, Dutta S, Khan HA, Majumdar S (2018) Seismic protection of building by rubber soil mixture as foundation isolation. Int J Geotech Earthq Eng 9(1):99–109CrossRef Nanda RP, Dutta S, Khan HA, Majumdar S (2018) Seismic protection of building by rubber soil mixture as foundation isolation. Int J Geotech Earthq Eng 9(1):99–109CrossRef
34.
Zurück zum Zitat Li B, Huang M, Zeng X (2016) Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures. J Mater Civ Eng 28(11):122–136CrossRef Li B, Huang M, Zeng X (2016) Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures. J Mater Civ Eng 28(11):122–136CrossRef
35.
Zurück zum Zitat Bao X, Jin Z, Cui H, Chen X, Xie X (2019) Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dyn Earthq Eng 120:273–291CrossRef Bao X, Jin Z, Cui H, Chen X, Xie X (2019) Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dyn Earthq Eng 120:273–291CrossRef
36.
Zurück zum Zitat Dutta S, Nanda RP (2022) Waste rubber-soil mat for protection of structures from earthquake-induced liquefaction. Int J of Geosynth and Ground Eng 8(5):57CrossRef Dutta S, Nanda RP (2022) Waste rubber-soil mat for protection of structures from earthquake-induced liquefaction. Int J of Geosynth and Ground Eng 8(5):57CrossRef
37.
Zurück zum Zitat Youwai S, Bergado DT (2003) Strength and deformation characteristics of shredded rubber tire - sand mixtures. Can Geotech J 40(2):254–264CrossRef Youwai S, Bergado DT (2003) Strength and deformation characteristics of shredded rubber tire - sand mixtures. Can Geotech J 40(2):254–264CrossRef
38.
Zurück zum Zitat Mashiri MS, Vinod JS, Neaz Sheikh M (2016) Constitutive Model for Sand-Tire Chip Mixture. Int J Geomech 16(1):04015022CrossRef Mashiri MS, Vinod JS, Neaz Sheikh M (2016) Constitutive Model for Sand-Tire Chip Mixture. Int J Geomech 16(1):04015022CrossRef
39.
Zurück zum Zitat Duncan JM, Byrne P, Wong KS, Mabry P (1980) Strength stress-strain and bulk modulus parameters for finite elements analyses of stresses and movements in soil masses. Geotechnical Engineering Resp. Rep. No. UCB/GT/80–01, Univ. of California, Berkeley, CA. Duncan JM, Byrne P, Wong KS, Mabry P (1980) Strength stress-strain and bulk modulus parameters for finite elements analyses of stresses and movements in soil masses. Geotechnical Engineering Resp. Rep. No. UCB/GT/80–01, Univ. of California, Berkeley, CA.
40.
Zurück zum Zitat Pastor M, Zienkiewicz OC, Leung KH (1985) Simple model for transient soil loading in earthquake analysis. II: non-associative models for sands. Int J Numer Anal Methods Geo 9(5):477–498CrossRef Pastor M, Zienkiewicz OC, Leung KH (1985) Simple model for transient soil loading in earthquake analysis. II: non-associative models for sands. Int J Numer Anal Methods Geo 9(5):477–498CrossRef
41.
Zurück zum Zitat Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. J Géotechnique 47(2):255–272CrossRef Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. J Géotechnique 47(2):255–272CrossRef
42.
Zurück zum Zitat Elgamal A, Yang Z, Parra E, Ragheb A (2003) Modeling of cyclic mobility in saturated cohesionless soils. Int J Plast 196:883–905CrossRef Elgamal A, Yang Z, Parra E, Ragheb A (2003) Modeling of cyclic mobility in saturated cohesionless soils. Int J Plast 196:883–905CrossRef
43.
Zurück zum Zitat Taiebat M, Dafalias YF (2008) SANISAND: Simple anisotropic sand plasticity model. Int J Numer Anal Methods Geo 32(8):915–948CrossRef Taiebat M, Dafalias YF (2008) SANISAND: Simple anisotropic sand plasticity model. Int J Numer Anal Methods Geo 32(8):915–948CrossRef
44.
Zurück zum Zitat Boulanger RW, Ziotopoulou K (2015) PM4SAND (Version 3): A sand plasticity model for earthquake engineering application. Center for Geotechnical Modeling, Report No. UCD/CGM-15/01. Boulanger RW, Ziotopoulou K (2015) PM4SAND (Version 3): A sand plasticity model for earthquake engineering application. Center for Geotechnical Modeling, Report No. UCD/CGM-15/01.
45.
Zurück zum Zitat Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634CrossRef Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–634CrossRef
46.
Zurück zum Zitat McKenna F, Fenves GL (2007) The OpenSees command language manual Version 1.2. Berkeley, USA: Pacific Earthquake Engineering Research Center, University of California, . McKenna F, Fenves GL (2007) The OpenSees command language manual Version 1.2. Berkeley, USA: Pacific Earthquake Engineering Research Center, University of California, .
47.
Zurück zum Zitat ASTM D, (2004) 422 Standard test method for particle-size analysis of soils West ASTM International Conshohocken. ASTM D, (2004) 422 Standard test method for particle-size analysis of soils West ASTM International Conshohocken.
48.
Zurück zum Zitat ASTM D (2004) 4254 Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken ASTM D (2004) 4254 Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken
49.
Zurück zum Zitat ASTM D (2004) 4253 standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken ASTM D (2004) 4253 standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken
50.
Zurück zum Zitat Lee JS, Dodds J, Santamarina JC (2007) Behavior of rigid-soft particle mixtures. J Earthq Eng 19(2):179–184 Lee JS, Dodds J, Santamarina JC (2007) Behavior of rigid-soft particle mixtures. J Earthq Eng 19(2):179–184
51.
Zurück zum Zitat Kim HK, Santamarina JC (2008) Sand-rubber mixtures (large rubber chips). Can Geotech J 4(10):1457–1457CrossRef Kim HK, Santamarina JC (2008) Sand-rubber mixtures (large rubber chips). Can Geotech J 4(10):1457–1457CrossRef
52.
Zurück zum Zitat ASTM D (2011) 7181 Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken ASTM D (2011) 7181 Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken
53.
Zurück zum Zitat ASTM D (2004) 5311 Standard test method for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken ASTM D (2004) 5311 Standard test method for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken
54.
Zurück zum Zitat Head KH (1982) Manual of soil laboratory testing. E.L.E International Limited, Leighton Buzzard Head KH (1982) Manual of soil laboratory testing. E.L.E International Limited, Leighton Buzzard
55.
Zurück zum Zitat Baldi G, Nova R (1984) Membrane penetration effects in triaxial testing. J Geotech Eng 110(3):403–420CrossRef Baldi G, Nova R (1984) Membrane penetration effects in triaxial testing. J Geotech Eng 110(3):403–420CrossRef
56.
Zurück zum Zitat Li XS, Dafalias YF (2002) Constitutive modelling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880CrossRef Li XS, Dafalias YF (2002) Constitutive modelling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880CrossRef
57.
Zurück zum Zitat Das S, Bhowmik D (2020) Small-strain dynamic behavior of sand and sand–crumb rubber mixture for different sizes of crumb rubber particle. J Mater Civ Eng 32(11):04020334CrossRef Das S, Bhowmik D (2020) Small-strain dynamic behavior of sand and sand–crumb rubber mixture for different sizes of crumb rubber particle. J Mater Civ Eng 32(11):04020334CrossRef
58.
Zurück zum Zitat Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenvironmental Eng 124(12):1215–1217CrossRef Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenvironmental Eng 124(12):1215–1217CrossRef
59.
Zurück zum Zitat Wood DM (1990) Soil behavior and critical state soil mechanics. Cambridge University Press, Cambridge Wood DM (1990) Soil behavior and critical state soil mechanics. Cambridge University Press, Cambridge
60.
Zurück zum Zitat Been K, Jefferies MG (1985) A state parameter for sands. J Geotech 35(2):99–112CrossRef Been K, Jefferies MG (1985) A state parameter for sands. J Geotech 35(2):99–112CrossRef
61.
Zurück zum Zitat Nemat-Nasser S, Tobita Y (1982) Influence of fabric on liquefaction and densification potential of cohesionless sand. Mech Mater 1(1):43–62CrossRef Nemat-Nasser S, Tobita Y (1982) Influence of fabric on liquefaction and densification potential of cohesionless sand. Mech Mater 1(1):43–62CrossRef
62.
Zurück zum Zitat Zahmatkesh A, Choobbasti AJ (2016) Calibration of an advanced constitutive model for Babolsar sand accompanied by liquefaction analysis. J Earthq Eng 21(4):679–699CrossRef Zahmatkesh A, Choobbasti AJ (2016) Calibration of an advanced constitutive model for Babolsar sand accompanied by liquefaction analysis. J Earthq Eng 21(4):679–699CrossRef
63.
Zurück zum Zitat McKenna FT (1997) Object oriented finite element programming: Framework for analysis, algorithms and parallel computing. PhD thesis, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA. McKenna FT (1997) Object oriented finite element programming: Framework for analysis, algorithms and parallel computing. PhD thesis, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
64.
Zurück zum Zitat Biot MA (1956) Theory of propagation of elastic waves in a fluid–saturated porous solid. J Acoust Soc Am 28:168–178CrossRef Biot MA (1956) Theory of propagation of elastic waves in a fluid–saturated porous solid. J Acoust Soc Am 28:168–178CrossRef
65.
Zurück zum Zitat Tobada VM, Dobry R (1993) Experimental results of Model No. 1 at RPI. Arulanandan, K. and Scott, R.F. (eds.), Verification of Numerical procedures for the analysis of soil liquefaction problems. Rotterdam, A.A. Balkema. Tobada VM, Dobry R (1993) Experimental results of Model No. 1 at RPI. Arulanandan, K. and Scott, R.F. (eds.), Verification of Numerical procedures for the analysis of soil liquefaction problems. Rotterdam, A.A. Balkema.
66.
Zurück zum Zitat Taiebat M, Jeremic B, Dafalias YF, Kaynia AM, Cheng Z (2010) Propagation of seismic waves through liquefied soils. Soil Dyn Earthq Eng 30(4):236–257CrossRef Taiebat M, Jeremic B, Dafalias YF, Kaynia AM, Cheng Z (2010) Propagation of seismic waves through liquefied soils. Soil Dyn Earthq Eng 30(4):236–257CrossRef
67.
Zurück zum Zitat Taiebat M, Shahir H, Pak A (2007) Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dyn Earthq Eng 27(1):60–72CrossRef Taiebat M, Shahir H, Pak A (2007) Study of pore pressure variation during liquefaction using two constitutive models for sand. Soil Dyn Earthq Eng 27(1):60–72CrossRef
68.
Zurück zum Zitat Gonzalez L, Abdoun T, Sharp MK (2002) Modeling of seismically induced liquefaction under high confining stress. Int J Phys Model 3:1–15 Gonzalez L, Abdoun T, Sharp MK (2002) Modeling of seismically induced liquefaction under high confining stress. Int J Phys Model 3:1–15
69.
Zurück zum Zitat Mashiri M, Vinod J, Sheikh M (2015) Liquefaction potential and dynamic properties of sand-tyre chip (STCh) mixtures. Geotech Test J 39(1):69–79 Mashiri M, Vinod J, Sheikh M (2015) Liquefaction potential and dynamic properties of sand-tyre chip (STCh) mixtures. Geotech Test J 39(1):69–79
70.
Zurück zum Zitat Nakhaei A, Marandi SM, Kermani SS, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132CrossRef Nakhaei A, Marandi SM, Kermani SS, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132CrossRef
71.
Zurück zum Zitat Uchimura T, Chi N, Nirmalan S, Sato T, Meidani M, Towhata I (2007) Shaking table tests on effect of tire chips and sand mixture in increasing liquefaction resistance and mitigating uplift of pipe. In: Proc., Int. Workshop on Scrap Tire Derived Geomaterials-Opportunities and Challenges, Taylor & Francis Group, London. Uchimura T, Chi N, Nirmalan S, Sato T, Meidani M, Towhata I (2007) Shaking table tests on effect of tire chips and sand mixture in increasing liquefaction resistance and mitigating uplift of pipe. In: Proc., Int. Workshop on Scrap Tire Derived Geomaterials-Opportunities and Challenges, Taylor & Francis Group, London.
Metadaten
Titel
Liquefaction analysis of sand-tire mixture with a critical state two-surface plasticity model
verfasst von
Masoud Raveshi
Reza Noorzad
Publikationsdatum
01.11.2023
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 11/2023
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-023-01262-y

Weitere Artikel der Ausgabe 11/2023

Innovative Infrastructure Solutions 11/2023 Zur Ausgabe